CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
- URL: http://arxiv.org/abs/2408.02193v1
- Date: Mon, 5 Aug 2024 02:38:48 GMT
- Title: CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
- Authors: Weijie Lv, Xuan Xia, Sheng-Jun Huang,
- Abstract summary: Existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training.
CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data.
CodeACT achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%.
- Score: 30.441431693349866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
Related papers
- FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
We present techniques that integrate various clustering and pruning metrics to selectively reduce training data without compromising the accuracy and functionality of the generated code.
Our experiments show that these pruning strategies not only reduce the computational resources needed but also enhance the overall quality code generation.
arXiv Detail & Related papers (2024-07-06T10:30:43Z) - Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics [29.49913315698914]
Deep Reinforcement Learning (DRL) has emerged as a promising approach for handling highly dynamic and nonlinear Active Flow Control (AFC) problems.
This study focuses on optimizing DRL-based algorithms in parallel settings.
We achieve a significant boost in parallel efficiency from around 49% to approximately 78%.
arXiv Detail & Related papers (2024-02-18T09:07:30Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiE is an efficient library that facilitates collaborative training of large language models.
With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization.
arXiv Detail & Related papers (2023-12-01T08:02:16Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G [10.28841351455586]
Deep Reinforcement Learning (DRL) has become a valuable solution to automatically learn efficient resource management strategies in complex networks.
In many scenarios, the learning task is performed in the Cloud, while experience samples are generated directly by edge nodes or users.
This creates a friction between the need to speed up convergence towards an effective strategy, which requires the allocation of resources to transmit learning samples.
We propose a dynamic balancing strategy between the learning and data planes, which allows the centralized learning agent to quickly converge to an efficient resource allocation strategy.
arXiv Detail & Related papers (2022-11-30T11:26:01Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
Federated Learning (FL) suffers from two critical challenges, i.e., limited computational resources and low training efficiency.
We propose a novel FL framework, FedDUAP, to exploit the insensitive data on the server and the decentralized data in edge devices.
By integrating the two original techniques together, our proposed FL model, FedDUAP, significantly outperforms baseline approaches in terms of accuracy (up to 4.8% higher), efficiency (up to 2.8 times faster), and computational cost (up to 61.9% smaller)
arXiv Detail & Related papers (2022-04-25T10:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.