MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization
- URL: http://arxiv.org/abs/2408.02207v1
- Date: Mon, 5 Aug 2024 03:15:21 GMT
- Title: MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization
- Authors: Andoni I. Garmendia, Quentin Cappart, Josu Ceberio, Alexander Mendiburu,
- Abstract summary: This paper introduces a versatile framework, referred to as Memory-Augmented Reinforcement for Combinatorial Optimization (MARCO)
MARCO stores data collected throughout the optimization trajectory and retrieves contextually relevant information at each state.
Thanks to the parallel nature of NCO models, several search threads can run simultaneously, all sharing the same memory module.
- Score: 44.24494442399324
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural Combinatorial Optimization (NCO) is an emerging domain where deep learning techniques are employed to address combinatorial optimization problems as a standalone solver. Despite their potential, existing NCO methods often suffer from inefficient search space exploration, frequently leading to local optima entrapment or redundant exploration of previously visited states. This paper introduces a versatile framework, referred to as Memory-Augmented Reinforcement for Combinatorial Optimization (MARCO), that can be used to enhance both constructive and improvement methods in NCO through an innovative memory module. MARCO stores data collected throughout the optimization trajectory and retrieves contextually relevant information at each state. This way, the search is guided by two competing criteria: making the best decision in terms of the quality of the solution and avoiding revisiting already explored solutions. This approach promotes a more efficient use of the available optimization budget. Moreover, thanks to the parallel nature of NCO models, several search threads can run simultaneously, all sharing the same memory module, enabling an efficient collaborative exploration. Empirical evaluations, carried out on the maximum cut, maximum independent set and travelling salesman problems, reveal that the memory module effectively increases the exploration, enabling the model to discover diverse, higher-quality solutions. MARCO achieves good performance in a low computational cost, establishing a promising new direction in the field of NCO.
Related papers
- Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
Combinatorial optimization (CO) is essential for improving efficiency and performance in engineering applications.
When it comes to real-world engineering problems, algorithms based on pure mathematical reasoning are limited and incapable to capture the contextual nuances necessary for optimization.
This study explores the potential of Large Language Models (LLMs) in solving engineering CO problems by leveraging their reasoning power and contextual knowledge.
arXiv Detail & Related papers (2024-11-19T15:39:51Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
We present MEMENTO, an approach that leverages memory to improve the adaptation of neural solvers at time.
We successfully train all RL auto-regressive solvers on large instances, and show that MEMENTO can scale and is data-efficient.
Overall, MEMENTO enables to push the state-of-the-art on 11 out of 12 evaluated tasks.
arXiv Detail & Related papers (2024-06-24T08:18:19Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Moco: A Learnable Meta Optimizer for Combinatorial Optimization [5.359176539960004]
Moco learns a graph neural network that updates the solution construction procedure based on features extracted from the current search state.
This meta training procedure targets the overall best solution found during the search procedure given information such as the search budget.
Moco is a fully learnable meta that does not utilize any problem specific local search or decomposition.
arXiv Detail & Related papers (2024-02-07T14:41:17Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - RELS-DQN: A Robust and Efficient Local Search Framework for
Combinatorial Optimization [11.269582666887324]
We introduce RELS-DQN, a lightweight DQN framework that exhibits the local search behavior while providing practical scalability.
Using the RELS-DQN model trained on one application, it can generalize to various applications by providing solution values higher than or equal to both the local search algorithms and the existing DQN models.
arXiv Detail & Related papers (2023-04-11T18:01:49Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - A General Large Neighborhood Search Framework for Solving Integer Linear
Programs [46.62993477453986]
We focus on solving integer programs, and ground our approach in the large neighborhood search (SLN) paradigm.
We show that our LNS framework can significantly outperform compared to state-of-the-art commercial solvers such as Gurobi.
arXiv Detail & Related papers (2020-03-29T23:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.