Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings
- URL: http://arxiv.org/abs/2408.02237v1
- Date: Mon, 5 Aug 2024 05:09:23 GMT
- Title: Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings
- Authors: Md. Arid Hasan, Prerona Tarannum, Krishno Dey, Imran Razzak, Usman Naseem,
- Abstract summary: Large language models (LLMs) have garnered significant interest in natural language processing (NLP)
Recent studies have highlighted the limitations of LLMs in low-resource languages.
We present datasets for sentiment and hate speech tasks by translating from English to Bangla, Hindi, and Urdu.
- Score: 12.507989493130175
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have garnered significant interest in natural language processing (NLP), particularly their remarkable performance in various downstream tasks in resource-rich languages. Recent studies have highlighted the limitations of LLMs in low-resource languages, primarily focusing on binary classification tasks and giving minimal attention to South Asian languages. These limitations are primarily attributed to constraints such as dataset scarcity, computational costs, and research gaps specific to low-resource languages. To address this gap, we present datasets for sentiment and hate speech tasks by translating from English to Bangla, Hindi, and Urdu, facilitating research in low-resource language processing. Further, we comprehensively examine zero-shot learning using multiple LLMs in English and widely spoken South Asian languages. Our findings indicate that GPT-4 consistently outperforms Llama 2 and Gemini, with English consistently demonstrating superior performance across diverse tasks compared to low-resource languages. Furthermore, our analysis reveals that natural language inference (NLI) exhibits the highest performance among the evaluated tasks, with GPT-4 demonstrating superior capabilities.
Related papers
- On Limitations of LLM as Annotator for Low Resource Languages [0.4194295877935868]
Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification.
This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection.
To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages.
arXiv Detail & Related papers (2024-11-26T17:55:37Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Better to Ask in English: Evaluation of Large Language Models on English, Low-resource and Cross-Lingual Settings [12.507989493130175]
GPT-4, Llama 2, and Gemini are evaluated for their effectiveness in English compared to other low-resource languages from South Asia.
Findings suggest GPT-4 outperformed Llama 2 and Gemini in all five prompt settings and across all languages.
arXiv Detail & Related papers (2024-10-17T02:12:30Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
Large Language Models (LLMs) perform better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate.
We propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations.
Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores.
arXiv Detail & Related papers (2024-04-17T16:53:16Z) - LLMs Are Few-Shot In-Context Low-Resource Language Learners [59.74451570590808]
In-context learning (ICL) empowers large language models (LLMs) to perform diverse tasks in underrepresented languages.
We extensively study ICL and its cross-lingual variation (X-ICL) on 25 low-resource and 7 relatively higher-resource languages.
Our study concludes the significance of few-shot in-context information on enhancing the low-resource understanding quality of LLMs.
arXiv Detail & Related papers (2024-03-25T07:55:29Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
We explore the extent to which pretrained large language models (LLMs) can bridge the performance gap for under-resourced languages.
We find that LLMs easily set the state of the art for the under-resourced languages by substantial margins.
For all our languages, human evaluation shows on-a-par performance with humans for our best systems, but BLEU scores collapse compared to English.
arXiv Detail & Related papers (2024-02-19T16:29:40Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
We focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets.
We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets.
arXiv Detail & Related papers (2024-02-03T10:41:05Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.