Perception Matters: Enhancing Embodied AI with Uncertainty-Aware Semantic Segmentation
- URL: http://arxiv.org/abs/2408.02297v2
- Date: Tue, 14 Jan 2025 10:27:40 GMT
- Title: Perception Matters: Enhancing Embodied AI with Uncertainty-Aware Semantic Segmentation
- Authors: Sai Prasanna, Daniel Honerkamp, Kshitij Sirohi, Tim Welschehold, Wolfram Burgard, Abhinav Valada,
- Abstract summary: Embodied AI has made significant progress acting in unexplored environments.
Current search methods largely focus on dated perception models, neglect temporal aggregation, and transfer from ground truth directly to noisy perception at test time.
We address the identified problems through calibrated perception probabilities and uncertainty across aggregation and found decisions.
- Score: 24.32551050538683
- License:
- Abstract: Embodied AI has made significant progress acting in unexplored environments. However, tasks such as object search have largely focused on efficient policy learning. In this work, we identify several gaps in current search methods: They largely focus on dated perception models, neglect temporal aggregation, and transfer from ground truth directly to noisy perception at test time, without accounting for the resulting overconfidence in the perceived state. We address the identified problems through calibrated perception probabilities and uncertainty across aggregation and found decisions, thereby adapting the models for sequential tasks. The resulting methods can be directly integrated with pretrained models across a wide family of existing search approaches at no additional training cost. We perform extensive evaluations of aggregation methods across both different semantic perception models and policies, confirming the importance of calibrated uncertainties in both the aggregation and found decisions. We make the code and trained models available at https://semantic-search.cs.uni-freiburg.de.
Related papers
- No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula promise to enable agents to be robust to in- and out-of-distribution tasks.
This work investigates how existing UED methods select training environments, focusing on task prioritisation metrics.
We develop a method that directly trains on scenarios with high learnability.
arXiv Detail & Related papers (2024-08-27T14:31:54Z) - Informed Decision-Making through Advancements in Open Set Recognition and Unknown Sample Detection [0.0]
Open set recognition (OSR) aims to bring classification tasks in a situation that is more like reality.
This study provides an algorithm exploring a new representation of feature space to improve classification in OSR tasks.
arXiv Detail & Related papers (2024-05-09T15:15:34Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation [2.1517210693540005]
Uncertainty estimation is an essential and heavily-studied component for semantic segmentation methods.
Can data-related and model-related uncertainty really be separated in practice?
Which components of an uncertainty method are essential for real-world performance?
arXiv Detail & Related papers (2024-01-16T17:02:21Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - What classifiers know what they don't? [23.166238399010012]
We introduce UIMNET: a realistic, ImageNet-scale test-bed to evaluate predictive uncertainty estimates for deep image classifiers.
Our benchmark provides implementations of eight state-of-the-art algorithms, six uncertainty measures, four in-domain metrics, three out-domain metrics, and a fully automated pipeline to train, calibrate, ensemble, select, and evaluate models.
arXiv Detail & Related papers (2021-07-13T16:17:06Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.