Embedding Compression in Recommender Systems: A Survey
- URL: http://arxiv.org/abs/2408.02304v1
- Date: Mon, 05 Aug 2024 08:30:16 GMT
- Title: Embedding Compression in Recommender Systems: A Survey
- Authors: Shiwei Li, Huifeng Guo, Xing Tang, Ruiming Tang, Lu Hou, Ruixuan Li, Rui Zhang,
- Abstract summary: We introduce deep learning recommendation models and the basic concept of embedding compression in recommender systems.
We systematically organize existing approaches into three categories, namely low-precision, mixed-dimension, and weight-sharing.
- Score: 44.949824174769
- License:
- Abstract: To alleviate the problem of information explosion, recommender systems are widely deployed to provide personalized information filtering services. Usually, embedding tables are employed in recommender systems to transform high-dimensional sparse one-hot vectors into dense real-valued embeddings. However, the embedding tables are huge and account for most of the parameters in industrial-scale recommender systems. In order to reduce memory costs and improve efficiency, various approaches are proposed to compress the embedding tables. In this survey, we provide a comprehensive review of embedding compression approaches in recommender systems. We first introduce deep learning recommendation models and the basic concept of embedding compression in recommender systems. Subsequently, we systematically organize existing approaches into three categories, namely low-precision, mixed-dimension, and weight-sharing, respectively. Lastly, we summarize the survey with some general suggestions and provide future prospects for this field.
Related papers
- The Fault in Our Recommendations: On the Perils of Optimizing the Measurable [2.6217304977339473]
We show that optimizing for engagement can lead to significant utility losses.
We propose a utility-aware policy that initially recommends a mix of popular and niche content.
arXiv Detail & Related papers (2024-05-07T02:12:17Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Dynamic Embedding Size Search with Minimum Regret for Streaming
Recommender System [39.78277554870799]
We show that setting an identical and static embedding size is sub-optimal in terms of recommendation performance and memory cost.
We propose a method to minimize the embedding size selection regret on both user and item sides in a non-stationary manner.
arXiv Detail & Related papers (2023-08-15T13:27:18Z) - Mem-Rec: Memory Efficient Recommendation System using Alternative
Representation [6.542635536704625]
MEM-REC is a novel alternative representation approach for embedding tables.
We show that MEM-REC can not only maintain the recommendation quality but can also improve the embedding latency.
arXiv Detail & Related papers (2023-05-12T02:36:07Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.