Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation
- URL: http://arxiv.org/abs/2408.02312v1
- Date: Mon, 5 Aug 2024 08:45:50 GMT
- Title: Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation
- Authors: Luca Schmid, Tomer Raviv, Nir Shlezinger, Laurent Schmalen,
- Abstract summary: We propose a blind symbol detection for block-fading linear inter-symbol channels.
We design a joint channel estimation and detection scheme that combines the study expectation algorithm and the ubiquitous belief propagation algorithm.
We show that the proposed method can learn efficient schedules that generalize well and even outperform coherent BP detection in high signal-to-noise scenarios.
- Score: 29.114100423416204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study iterative blind symbol detection for block-fading linear inter-symbol interference channels. Based on the factor graph framework, we design a joint channel estimation and detection scheme that combines the expectation maximization (EM) algorithm and the ubiquitous belief propagation (BP) algorithm. Interweaving the iterations of both schemes significantly reduces the EM algorithm's computational burden while retaining its excellent performance. To this end, we apply simple yet effective model-based learning methods to find a suitable parameter update schedule by introducing momentum in both the EM parameter updates as well as in the BP message passing. Numerical simulations verify that the proposed method can learn efficient schedules that generalize well and even outperform coherent BP detection in high signal-to-noise scenarios.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Blind Channel Estimation and Joint Symbol Detection with Data-Driven
Factor Graphs [31.8050631698684]
We investigate the application of the framework for blind joint channel estimation and symbol detection on time-variant inter-symbol interference channels.
We address the issue by efficiently approximating the posterior propagations using the belief parameter (BP) algorithm on a suitable factor graph.
In addition, we propose a data-driven version of our algorithm that introduces momentum in BP updates and learns a suitable EM update schedule.
Our numerical experiments demonstrate the excellent performance of the proposed blind detector and show that it even outperforms coherent BP detection in high signal-to-noise scenarios.
arXiv Detail & Related papers (2024-01-23T10:26:15Z) - Hyperparameter Estimation for Sparse Bayesian Learning Models [1.0172874946490507]
Aparse Bayesian Learning (SBL) models are extensively used in signal processing and machine learning for promoting sparsity through hierarchical priors.
This paper presents a framework for the improvement of SBL models for various objective functions.
A novel algorithm is introduced showing enhanced efficiency, especially under signal noise ratios.
arXiv Detail & Related papers (2024-01-04T21:24:01Z) - Posterior Sampling with Delayed Feedback for Reinforcement Learning with
Linear Function Approximation [62.969796245827006]
Delayed-PSVI is an optimistic value-based algorithm that explores the value function space via noise perturbation with posterior sampling.
We show our algorithm achieves $widetildeO(sqrtd3H3 T + d2H2 E[tau]$ worst-case regret in the presence of unknown delays.
We incorporate a gradient-based approximate sampling scheme via Langevin dynamics for Delayed-LPSVI.
arXiv Detail & Related papers (2023-10-29T06:12:43Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
We present a family of BP-based message-passing algorithms with a reinforcement field that biases towards locally entropic distributions.
These algorithms are capable of training multi-layer neural networks with discrete weights and activations with performance comparable to SGD-inspired solutions.
arXiv Detail & Related papers (2021-10-27T16:52:26Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Tune smarter not harder: A principled approach to tuning learning rates
for shallow nets [13.203765985718201]
principled approach to choosing the learning rate is proposed for shallow feedforward neural networks.
It is shown through simulations that the proposed search method significantly outperforms the existing tuning methods.
arXiv Detail & Related papers (2020-03-22T09:38:35Z) - Active Learning for Identification of Linear Dynamical Systems [12.056495277232118]
We show a finite time bound estimation rate our algorithm attains.
We analyze several examples where our algorithm provably improves over rates obtained by playing noise.
arXiv Detail & Related papers (2020-02-02T21:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.