From Generalist to Specialist: Exploring CWE-Specific Vulnerability Detection
- URL: http://arxiv.org/abs/2408.02329v1
- Date: Mon, 5 Aug 2024 09:12:39 GMT
- Title: From Generalist to Specialist: Exploring CWE-Specific Vulnerability Detection
- Authors: Syafiq Al Atiiq, Christian Gehrmann, Kevin Dahlén, Karim Khalil,
- Abstract summary: Common Weaknession (CWE) represents a unique category of vulnerabilities with distinct characteristics, code semantics, and patterns.
Treating all vulnerabilities as a single label with a binary classification approach may oversimplify the problem.
- Score: 1.9249287163937974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability Detection (VD) using machine learning faces a significant challenge: the vast diversity of vulnerability types. Each Common Weakness Enumeration (CWE) represents a unique category of vulnerabilities with distinct characteristics, code semantics, and patterns. Treating all vulnerabilities as a single label with a binary classification approach may oversimplify the problem, as it fails to capture the nuances and context-specific to each CWE. As a result, a single binary classifier might merely rely on superficial text patterns rather than understanding the intricacies of each vulnerability type. Recent reports showed that even the state-of-the-art Large Language Model (LLM) with hundreds of billions of parameters struggles to generalize well to detect vulnerabilities. Our work investigates a different approach that leverages CWE-specific classifiers to address the heterogeneity of vulnerability types. We hypothesize that training separate classifiers for each CWE will enable the models to capture the unique characteristics and code semantics associated with each vulnerability category. To confirm this, we conduct an ablation study by training individual classifiers for each CWE and evaluating their performance independently. Our results demonstrate that CWE-specific classifiers outperform a single binary classifier trained on all vulnerabilities. Building upon this, we explore strategies to combine them into a unified vulnerability detection system using a multiclass approach. Even if the lack of large and high-quality datasets for vulnerability detection is still a major obstacle, our results show that multiclass detection can be a better path toward practical vulnerability detection in the future. All our models and code to produce our results are open-sourced.
Related papers
- C2P-CLIP: Injecting Category Common Prompt in CLIP to Enhance Generalization in Deepfake Detection [98.34703790782254]
We introduce Category Common Prompt CLIP, which integrates the category common prompt into the text encoder to inject category-related concepts into the image encoder.
Our method achieves a 12.41% improvement in detection accuracy compared to the original CLIP, without introducing additional parameters during testing.
arXiv Detail & Related papers (2024-08-19T02:14:25Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
Source code vulnerability detection aims to identify inherent vulnerabilities to safeguard software systems from potential attacks.
Many prior studies overlook diverse vulnerability characteristics, simplifying the problem into a binary (0-1) classification task.
FGVulDet employs multiple classifiers to discern characteristics of various vulnerability types and combines their outputs to identify the specific type of vulnerability.
FGVulDet is trained on a large-scale dataset from GitHub, encompassing five different types of vulnerabilities.
arXiv Detail & Related papers (2024-04-15T09:10:52Z) - Can An Old Fashioned Feature Extraction and A Light-weight Model Improve
Vulnerability Type Identification Performance? [6.423483122892239]
We investigate the problem of vulnerability type identification (VTI)
We evaluate the performance of the well-known and advanced pre-trained models for VTI on a large set of vulnerabilities.
We introduce a lightweight independent component to refine the predictions of the baseline approach.
arXiv Detail & Related papers (2023-06-26T14:28:51Z) - LIVABLE: Exploring Long-Tailed Classification of Software Vulnerability
Types [18.949810432641772]
We propose a Long-taIled software VulnerABiLity typE classification approach, called LIVABLE.
LIVABLE consists of two modules, including (1) vulnerability representation learning module, which improves the propagation steps in GNN.
A sequence-to-sequence model is also involved to enhance the vulnerability representations.
arXiv Detail & Related papers (2023-06-12T08:14:16Z) - Learning to Quantize Vulnerability Patterns and Match to Locate
Statement-Level Vulnerabilities [19.6975205650411]
A vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns.
During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities.
Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions.
arXiv Detail & Related papers (2023-05-26T04:13:31Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z) - $\mu$VulDeePecker: A Deep Learning-Based System for Multiclass
Vulnerability Detection [24.98991662345816]
We propose the first deep learning-based system for multiclass vulnerability detection, dubbed $mu$VulDeePecker.
The key insight underlying $mu$VulDeePecker is the concept of code attention, which can capture information that can help pinpoint types of vulnerabilities.
Experiments show that $mu$VulDeePecker is effective for multiclass vulnerability detection and that accommodating control-dependence can lead to higher detection capabilities.
arXiv Detail & Related papers (2020-01-08T01:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.