A Few-Shot Approach for Relation Extraction Domain Adaptation using Large Language Models
- URL: http://arxiv.org/abs/2408.02377v1
- Date: Mon, 5 Aug 2024 11:06:36 GMT
- Title: A Few-Shot Approach for Relation Extraction Domain Adaptation using Large Language Models
- Authors: Vanni Zavarella, Juan Carlos Gamero-Salinas, Sergio Consoli,
- Abstract summary: This paper experiments with leveraging in-context learning capabilities of Large Language Models to perform data annotation.
We show that by using a few-shot learning strategy with structured prompts and only minimal expert annotation the presented approach can potentially support domain adaptation of a science KG generation model.
- Score: 1.3927943269211591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs (KGs) have been successfully applied to the analysis of complex scientific and technological domains, with automatic KG generation methods typically building upon relation extraction models capturing fine-grained relations between domain entities in text. While these relations are fully applicable across scientific areas, existing models are trained on few domain-specific datasets such as SciERC and do not perform well on new target domains. In this paper, we experiment with leveraging in-context learning capabilities of Large Language Models to perform schema-constrained data annotation, collecting in-domain training instances for a Transformer-based relation extraction model deployed on titles and abstracts of research papers in the Architecture, Construction, Engineering and Operations (AECO) domain. By assessing the performance gain with respect to a baseline Deep Learning architecture trained on off-domain data, we show that by using a few-shot learning strategy with structured prompts and only minimal expert annotation the presented approach can potentially support domain adaptation of a science KG generation model.
Related papers
- Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
We study the multi-source Domain Generalization of text classification.
We propose a framework to use multiple seen domains to train a model that can achieve high accuracy in an unseen domain.
arXiv Detail & Related papers (2024-09-20T07:46:21Z) - Understanding the Cross-Domain Capabilities of Video-Based Few-Shot Action Recognition Models [3.072340427031969]
Few-shot action recognition (FSAR) aims to learn a model capable of identifying novel actions in videos using only a few examples.
In assuming the base dataset seen during meta-training and novel dataset used for evaluation can come from different domains, cross-domain few-shot learning alleviates data collection and annotation costs.
We systematically evaluate existing state-of-the-art single-domain, transfer-based, and cross-domain FSAR methods on new cross-domain tasks.
arXiv Detail & Related papers (2024-06-03T07:48:18Z) - Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis.
We propose a Large Language Model-based Continual Learning (textttLLM-CL) model for ABSA.
arXiv Detail & Related papers (2024-05-09T02:00:07Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Coarse-to-fine Knowledge Graph Domain Adaptation based on
Distantly-supervised Iterative Training [12.62127290494378]
We propose an integrated framework for adapting and re-learning knowledge graphs.
No manual data annotation is required to train the model.
We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples.
arXiv Detail & Related papers (2022-11-05T08:16:38Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
Large pre-trained language models (PLMs) have shown overwhelming performances compared with traditional neural network methods.
We propose a hierarchical relational knowledge distillation (HRKD) method to capture both hierarchical and domain relational information.
arXiv Detail & Related papers (2021-10-16T11:23:02Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Multifaceted Context Representation using Dual Attention for Ontology
Alignment [6.445605125467574]
Ontology alignment is an important research problem that finds application in various fields such as data integration, data transfer, data preparation etc.
We propose VeeAlign, a Deep Learning based model that uses a dual-attention mechanism to compute the contextualized representation of a concept in order to learn alignments.
We validate our approach on various datasets from different domains and in multilingual settings, and show its superior performance over SOTA methods.
arXiv Detail & Related papers (2020-10-16T18:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.