Contrastive Learning-based Multi Modal Architecture for Emoticon Prediction by Employing Image-Text Pairs
- URL: http://arxiv.org/abs/2408.02571v1
- Date: Mon, 5 Aug 2024 15:45:59 GMT
- Title: Contrastive Learning-based Multi Modal Architecture for Emoticon Prediction by Employing Image-Text Pairs
- Authors: Ananya Pandey, Dinesh Kumar Vishwakarma,
- Abstract summary: This research aims to analyze the relationship among sentences, visuals, and emoticons.
We have proposed a novel contrastive learning based multimodal architecture.
The proposed model attained an accuracy of 91% and an MCC-score of 90% while assessing emoticons.
- Score: 13.922091192207718
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The emoticons are symbolic representations that generally accompany the textual content to visually enhance or summarize the true intention of a written message. Although widely utilized in the realm of social media, the core semantics of these emoticons have not been extensively explored based on multiple modalities. Incorporating textual and visual information within a single message develops an advanced way of conveying information. Hence, this research aims to analyze the relationship among sentences, visuals, and emoticons. For an orderly exposition, this paper initially provides a detailed examination of the various techniques for extracting multimodal features, emphasizing the pros and cons of each method. Through conducting a comprehensive examination of several multimodal algorithms, with specific emphasis on the fusion approaches, we have proposed a novel contrastive learning based multimodal architecture. The proposed model employs the joint training of dual-branch encoder along with the contrastive learning to accurately map text and images into a common latent space. Our key finding is that by integrating the principle of contrastive learning with that of the other two branches yields superior results. The experimental results demonstrate that our suggested methodology surpasses existing multimodal approaches in terms of accuracy and robustness. The proposed model attained an accuracy of 91% and an MCC-score of 90% while assessing emoticons using the Multimodal-Twitter Emoticon dataset acquired from Twitter. We provide evidence that deep features acquired by contrastive learning are more efficient, suggesting that the proposed fusion technique also possesses strong generalisation capabilities for recognising emoticons across several modes.
Related papers
- From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Joyful: Joint Modality Fusion and Graph Contrastive Learning for
Multimodal Emotion Recognition [18.571931295274975]
Multimodal emotion recognition aims to recognize emotions for each utterance of multiple modalities.
Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue.
We propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful)
arXiv Detail & Related papers (2023-11-18T08:21:42Z) - A Multi-Modal Context Reasoning Approach for Conditional Inference on
Joint Textual and Visual Clues [23.743431157431893]
Conditional inference on joint textual and visual clues is a multi-modal reasoning task.
We propose a Multi-modal Context Reasoning approach, named ModCR.
We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance.
arXiv Detail & Related papers (2023-05-08T08:05:40Z) - Towards Unifying Medical Vision-and-Language Pre-training via Soft
Prompts [63.84720380390935]
There exist two typical types, textiti.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used.
We propose an effective yet straightforward scheme named PTUnifier to unify the two types.
We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts.
arXiv Detail & Related papers (2023-02-17T15:43:42Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
This work presents new methods to employ visual information as assistant signals to general NLP tasks.
For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs.
Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively.
arXiv Detail & Related papers (2023-01-09T13:54:11Z) - Holistic Visual-Textual Sentiment Analysis with Prior Models [64.48229009396186]
We propose a holistic method that achieves robust visual-textual sentiment analysis.
The proposed method consists of four parts: (1) a visual-textual branch to learn features directly from data for sentiment analysis, (2) a visual expert branch with a set of pre-trained "expert" encoders to extract selected semantic visual features, (3) a CLIP branch to implicitly model visual-textual correspondence, and (4) a multimodal feature fusion network based on BERT to fuse multimodal features and make sentiment predictions.
arXiv Detail & Related papers (2022-11-23T14:40:51Z) - Contrastive Cross-Modal Knowledge Sharing Pre-training for
Vision-Language Representation Learning and Retrieval [12.30468719055037]
A Contrastive Cross-Modal Knowledge Sharing Pre-training (COOKIE) is developed to grasp the joint text-image representations.
The first module is a weight-sharing transformer that builds on the head of the visual and textual encoders.
The other one is three specially designed contrastive learning, aiming to share knowledge between different models.
arXiv Detail & Related papers (2022-07-02T04:08:44Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
This paper proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance.
We build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images.
Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
arXiv Detail & Related papers (2020-12-30T09:11:50Z) - Cross-Media Keyphrase Prediction: A Unified Framework with
Multi-Modality Multi-Head Attention and Image Wordings [63.79979145520512]
We explore the joint effects of texts and images in predicting the keyphrases for a multimedia post.
We propose a novel Multi-Modality Multi-Head Attention (M3H-Att) to capture the intricate cross-media interactions.
Our model significantly outperforms the previous state of the art based on traditional attention networks.
arXiv Detail & Related papers (2020-11-03T08:44:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.