From Recognition to Prediction: Leveraging Sequence Reasoning for Action Anticipation
- URL: http://arxiv.org/abs/2408.02769v1
- Date: Mon, 5 Aug 2024 18:38:29 GMT
- Title: From Recognition to Prediction: Leveraging Sequence Reasoning for Action Anticipation
- Authors: Xin Liu, Chao Hao, Zitong Yu, Huanjing Yue, Jingyu Yang,
- Abstract summary: We propose a novel end-to-end video modeling architecture that utilizes attention mechanisms, named Anticipation via Recognition and Reasoning (ARR)
ARR decomposes the action anticipation task into action recognition and reasoning tasks, and effectively learns the statistical relationship between actions by next action prediction (NAP)
In addition, to address the challenge of relationship modeling that requires extensive training data, we propose an innovative approach for the unsupervised pre-training of the decoder.
- Score: 30.161471749050833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The action anticipation task refers to predicting what action will happen based on observed videos, which requires the model to have a strong ability to summarize the present and then reason about the future. Experience and common sense suggest that there is a significant correlation between different actions, which provides valuable prior knowledge for the action anticipation task. However, previous methods have not effectively modeled this underlying statistical relationship. To address this issue, we propose a novel end-to-end video modeling architecture that utilizes attention mechanisms, named Anticipation via Recognition and Reasoning (ARR). ARR decomposes the action anticipation task into action recognition and sequence reasoning tasks, and effectively learns the statistical relationship between actions by next action prediction (NAP). In comparison to existing temporal aggregation strategies, ARR is able to extract more effective features from observable videos to make more reasonable predictions. In addition, to address the challenge of relationship modeling that requires extensive training data, we propose an innovative approach for the unsupervised pre-training of the decoder, which leverages the inherent temporal dynamics of video to enhance the reasoning capabilities of the network. Extensive experiments on the Epic-kitchen-100, EGTEA Gaze+, and 50salads datasets demonstrate the efficacy of the proposed methods. The code is available at https://github.com/linuxsino/ARR.
Related papers
- PALM: Predicting Actions through Language Models [74.10147822693791]
We introduce PALM, an approach that tackles the task of long-term action anticipation.
Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details.
Our experimental results demonstrate that PALM surpasses the state-of-the-art methods in the task of long-term action anticipation.
arXiv Detail & Related papers (2023-11-29T02:17:27Z) - Temporal DINO: A Self-supervised Video Strategy to Enhance Action
Prediction [15.696593695918844]
This paper introduces a novel self-supervised video strategy for enhancing action prediction inspired by DINO (self-distillation with no labels)
The experimental results showcase significant improvements in prediction performance across 3D-ResNet, Transformer, and LSTM architectures.
These findings highlight the potential of our approach in diverse video-based tasks such as activity recognition, motion planning, and scene understanding.
arXiv Detail & Related papers (2023-08-08T21:18:23Z) - Inductive Attention for Video Action Anticipation [16.240254363118016]
We propose an inductive attention model, dubbed IAM, which leverages the current prior predictions as the query to infer future action.
Our method consistently outperforms the state-of-the-art anticipation models on multiple large-scale egocentric video datasets.
arXiv Detail & Related papers (2022-12-17T09:51:17Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience.
In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans.
We present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy.
arXiv Detail & Related papers (2022-11-16T20:00:38Z) - Unified Recurrence Modeling for Video Action Anticipation [16.240254363118016]
We propose a unified recurrence modeling for video action anticipation via message passing framework.
Our proposed method outperforms previous works on the large-scale EPIC-Kitchen dataset.
arXiv Detail & Related papers (2022-06-02T12:16:44Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
We introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos.
Our framework significantly improves both final performances and sample-efficiency of vision-based reinforcement learning.
arXiv Detail & Related papers (2022-03-25T19:44:09Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z) - Review of Video Predictive Understanding: Early ActionRecognition and
Future Action Prediction [39.966828592322315]
Action prediction is a major sub-area of video predictive understanding.
Various mathematical tools are widely adopted jointly with computer vision techniques for these two tasks.
Structures that rely on deep convolutional neural networks and recurrent neural networks have been extensively proposed for improving the performance of existing vision tasks.
arXiv Detail & Related papers (2021-07-11T22:46:52Z) - TTPP: Temporal Transformer with Progressive Prediction for Efficient
Action Anticipation [46.28067541184604]
Video action anticipation aims to predict future action categories from observed frames.
Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states.
This paper proposes a simple yet efficient Temporal Transformer with Progressive Prediction framework.
arXiv Detail & Related papers (2020-03-07T07:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.