Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection
- URL: http://arxiv.org/abs/2408.02901v3
- Date: Mon, 7 Oct 2024 07:13:24 GMT
- Title: Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection
- Authors: Taichi Nishimura, Shota Nakada, Hokuto Munakata, Tatsuya Komatsu,
- Abstract summary: We propose Lighthouse, a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD)
The first is a lack of comprehensive and reproducible experiments across various methods, datasets, and video-text features. This is because no unified training and evaluation covers multiple settings.
Most works release only the training codes, requiring users to implement the whole inference process of MR-HD. Lighthouse addresses these issues by implementing a unified reproducible that includes six models, three features, and five datasets.
- Score: 14.227865973426843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Lighthouse, a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD). Although researchers proposed various MR-HD approaches, the research community holds two main issues. The first is a lack of comprehensive and reproducible experiments across various methods, datasets, and video-text features. This is because no unified training and evaluation codebase covers multiple settings. The second is user-unfriendly design. Because previous works use different libraries, researchers set up individual environments. In addition, most works release only the training codes, requiring users to implement the whole inference process of MR-HD. Lighthouse addresses these issues by implementing a unified reproducible codebase that includes six models, three features, and five datasets. In addition, it provides an inference API and web demo to make these methods easily accessible for researchers and developers. Our experiments demonstrate that Lighthouse generally reproduces the reported scores in the reference papers. The code is available at https://github.com/line/lighthouse.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Prompto: An open source library for asynchronous querying of LLM endpoints [1.5558845602219702]
prompto is an open source Python library which facilitates asynchronous querying of Large Language Model endpoints.
Our library empowers researchers and developers to interact with LLMs more effectively and enabling faster experimentation and evaluation.
arXiv Detail & Related papers (2024-08-12T15:19:59Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
We introduce DataDreamer, an open source Python library that allows researchers to implement powerful large language models.
DataDreamer also helps researchers adhere to best practices that we propose to encourage open science.
arXiv Detail & Related papers (2024-02-16T00:10:26Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
This paper focuses on utilizing large language models (LLMs) for code generation in private libraries.
We propose a novel framework that emulates the process of programmers writing private code.
We create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval.
arXiv Detail & Related papers (2023-07-28T07:43:13Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfn is a PyTorch library that aims to address this need.
It provides users with a simple API for environments and useful abstractions for samplers and losses.
arXiv Detail & Related papers (2023-05-24T00:20:59Z) - Repro: An Open-Source Library for Improving the Reproducibility and
Usability of Publicly Available Research Code [74.28810048824519]
Repro is an open-source library which aims at improving the usability of research code.
It provides a lightweight Python API for running software released by researchers within Docker containers.
arXiv Detail & Related papers (2022-04-29T01:54:54Z) - Req2Lib: A Semantic Neural Model for Software Library Recommendation [8.713783358744166]
We propose a novel neural approach called Req2Lib which recommends libraries given descriptions of the project requirement.
We use a Sequence-to-Sequence model to learn the library linked-usage information and semantic information of requirement descriptions in natural language.
Our preliminary evaluation demonstrates that Req2Lib can recommend libraries accurately.
arXiv Detail & Related papers (2020-05-24T14:37:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.