Achieving More with Less: A Tensor-Optimization-Powered Ensemble Method
- URL: http://arxiv.org/abs/2408.02936v2
- Date: Mon, 12 Aug 2024 09:46:30 GMT
- Title: Achieving More with Less: A Tensor-Optimization-Powered Ensemble Method
- Authors: Jinghui Yuan, Weijin Jiang, Zhe Cao, Fangyuan Xie, Rong Wang, Feiping Nie, Yuan Yuan,
- Abstract summary: Ensemble learning is a method that leverages weak learners to produce a strong learner.
We design a smooth and convex objective function that leverages the concept of margin, making the strong learner more discriminative.
We then compare our algorithm with random forests of ten times the size and other classical methods across numerous datasets.
- Score: 53.170053108447455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble learning is a method that leverages weak learners to produce a strong learner. However, obtaining a large number of base learners requires substantial time and computational resources. Therefore, it is meaningful to study how to achieve the performance typically obtained with many base learners using only a few. We argue that to achieve this, it is essential to enhance both classification performance and generalization ability during the ensemble process. To increase model accuracy, each weak base learner needs to be more efficiently integrated. It is observed that different base learners exhibit varying levels of accuracy in predicting different classes. To capitalize on this, we introduce confidence tensors $\tilde{\mathbf{\Theta}}$ and $\tilde{\mathbf{\Theta}}_{rst}$ signifies the degree of confidence that the $t$-th base classifier assigns the sample to class $r$ while it actually belongs to class $s$. To the best of our knowledge, this is the first time an evaluation of the performance of base classifiers across different classes has been proposed. The proposed confidence tensor compensates for the strengths and weaknesses of each base classifier in different classes, enabling the method to achieve superior results with a smaller number of base learners. To enhance generalization performance, we design a smooth and convex objective function that leverages the concept of margin, making the strong learner more discriminative. Furthermore, it is proved that in gradient matrix of the loss function, the sum of each column's elements is zero, allowing us to solve a constrained optimization problem using gradient-based methods. We then compare our algorithm with random forests of ten times the size and other classical methods across numerous datasets, demonstrating the superiority of our approach.
Related papers
- A Margin-Maximizing Fine-Grained Ensemble Method [42.44032031918387]
This paper introduces an innovative "Margin-Maximizing Fine-Grained Ensemble Method"
It achieves performance surpassing large-scale ensembles by meticulously optimizing a small number of learners and enhancing generalization capability.
Our method outperforms traditional random forests using only one-tenth of the base learners and other state-of-the-art ensemble methods.
arXiv Detail & Related papers (2024-09-19T15:48:12Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Few-shot Classification via Ensemble Learning with Multi-Order
Statistics [9.145742362513932]
We show that leveraging ensemble learning on the base classes can correspondingly reduce the true error in the novel classes.
A novel method named Ensemble Learning with Multi-Order Statistics (ELMOS) is proposed in this paper.
We show that our method can produce a state-of-the-art performance on multiple few-shot classification benchmark datasets.
arXiv Detail & Related papers (2023-04-30T11:41:01Z) - Improving Feature Generalizability with Multitask Learning in Class
Incremental Learning [12.632121107536843]
Many deep learning applications, like keyword spotting, require the incorporation of new concepts (classes) over time, referred to as Class Incremental Learning (CIL)
The major challenge in CIL is catastrophic forgetting, i.e., preserving as much of the old knowledge as possible while learning new tasks.
We propose multitask learning during base model training to improve the feature generalizability.
Our approach enhances the average incremental learning accuracy by up to 5.5%, which enables more reliable and accurate keyword spotting over time.
arXiv Detail & Related papers (2022-04-26T07:47:54Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z) - Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot
Learning [76.98364915566292]
A common practice is to train a model on the base set first and then transfer to novel classes through fine-tuning.
We propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model.
We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-02-08T03:27:05Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Learning to Select Base Classes for Few-shot Classification [96.92372639495551]
We use the Similarity Ratio as an indicator for the generalization performance of a few-shot model.
We then formulate the base class selection problem as a submodular optimization problem over Similarity Ratio.
arXiv Detail & Related papers (2020-04-01T09:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.