Federated Learning Architectures: A Performance Evaluation with Crop Yield Prediction Application
- URL: http://arxiv.org/abs/2408.02998v1
- Date: Tue, 6 Aug 2024 07:05:56 GMT
- Title: Federated Learning Architectures: A Performance Evaluation with Crop Yield Prediction Application
- Authors: Anwesha Mukherjee, Rajkumar Buyya,
- Abstract summary: This paper implements centralized and decentralized federated learning frameworks for crop yield prediction based on Long Short-Term Memory Network.
The performance of the two frameworks is evaluated in terms of prediction accuracy, precision, recall, F1-Score, and training time.
- Score: 22.173280246644044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning has become an emerging technology for data analysis for IoT applications. This paper implements centralized and decentralized federated learning frameworks for crop yield prediction based on Long Short-Term Memory Network. For centralized federated learning, multiple clients and one server is considered, where the clients exchange their model updates with the server that works as the aggregator to build the global model. For the decentralized framework, a collaborative network is formed among the devices either using ring topology or using mesh topology. In this network, each device receives model updates from the neighbour devices, and performs aggregation to build the upgraded model. The performance of the centralized and decentralized federated learning frameworks are evaluated in terms of prediction accuracy, precision, recall, F1-Score, and training time. The experimental results present that $\geq$97% and $>$97.5% prediction accuracy are achieved using the centralized and decentralized federated learning-based frameworks respectively. The results also show that the using centralized federated learning the response time can be reduced by $\sim$75% than the cloud-only framework. Finally, the future research directions of the use of federated learning in crop yield prediction are explored in this paper.
Related papers
- Scheduling and Communication Schemes for Decentralized Federated
Learning [0.31410859223862103]
A decentralized federated learning (DFL) model with the gradient descent (SGD) algorithm has been introduced.
Three scheduling policies for DFL have been proposed for communications between the clients and the parallel servers.
Results show that the proposed scheduling polices have an impact both on the speed of convergence and in the final global model.
arXiv Detail & Related papers (2023-11-27T17:35:28Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Event-Triggered Decentralized Federated Learning over
Resource-Constrained Edge Devices [12.513477328344255]
Federated learning (FL) is a technique for distributed machine learning (ML)
In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation.
We develop a novel methodology for fully decentralized FL, where devices conduct model aggregation via cooperative consensus formation.
arXiv Detail & Related papers (2022-11-23T00:04:05Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
Federated learning describes the distributed training of models across multiple clients while keeping the data private on-device.
In this work, we view the server-orchestrated federated learning process as a hierarchical latent variable model where the server provides the parameters of a prior distribution over the client-specific model parameters.
We show that with simple Gaussian priors and a hard version of the well known Expectation-Maximization (EM) algorithm, learning in such a model corresponds to FedAvg, the most popular algorithm for the federated learning setting.
arXiv Detail & Related papers (2021-11-19T12:58:59Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Fast-Convergent Federated Learning [82.32029953209542]
Federated learning is a promising solution for distributing machine learning tasks through modern networks of mobile devices.
We propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training.
arXiv Detail & Related papers (2020-07-26T14:37:51Z) - Information-Theoretic Bounds on the Generalization Error and Privacy
Leakage in Federated Learning [96.38757904624208]
Machine learning algorithms on mobile networks can be characterized into three different categories.
The main objective of this work is to provide an information-theoretic framework for all of the aforementioned learning paradigms.
arXiv Detail & Related papers (2020-05-05T21:23:45Z) - Coded Federated Learning [5.375775284252717]
Federated learning is a method of training a global model from decentralized data distributed across client devices.
Our results show that CFL allows the global model to converge nearly four times faster when compared to an uncoded approach.
arXiv Detail & Related papers (2020-02-21T23:06:20Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
Federated learning (FL) is emerging as a new paradigm to train machine learning models in distributed systems.
The paper proposes a fully distributed (or server-less) learning approach: the proposed FL algorithms leverage the cooperation of devices that perform data operations inside the network.
The approach lays the groundwork for integration of FL within 5G and beyond networks characterized by decentralized connectivity and computing.
arXiv Detail & Related papers (2019-12-27T15:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.