Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
- URL: http://arxiv.org/abs/2408.03274v1
- Date: Tue, 6 Aug 2024 16:17:51 GMT
- Title: Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
- Authors: Angie Boggust, Venkatesh Sivaraman, Yannick Assogba, Donghao Ren, Dominik Moritz, Fred Hohman,
- Abstract summary: To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output.
Existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools.
To support real-world comparative, we develop an interactive visual system called Compress and Compare.
Within a single interface, Compress and Compare surfaces promising compression strategies by visualizing provenance relationships between compressed models and reveals compression-induced behavior changes by comparing models' predictions, weights, and activations.
- Score: 20.360936113552597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools. To support real-world comparative workflows, we develop an interactive visual system called Compress and Compare. Within a single interface, Compress and Compare surfaces promising compression strategies by visualizing provenance relationships between compressed models and reveals compression-induced behavior changes by comparing models' predictions, weights, and activations. We demonstrate how Compress and Compare supports common compression analysis tasks through two case studies, debugging failed compression on generative language models and identifying compression artifacts in image classification models. We further evaluate Compress and Compare in a user study with eight compression experts, illustrating its potential to provide structure to compression workflows, help practitioners build intuition about compression, and encourage thorough analysis of compression's effect on model behavior. Through these evaluations, we identify compression-specific challenges that future visual analytics tools should consider and Compress and Compare visualizations that may generalize to broader model comparison tasks.
Related papers
- Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
We study how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence.
We find that gradients require milder compression rates than activations.
Experiments also show that models trained with TopK perform well only when compression is also applied during inference.
arXiv Detail & Related papers (2024-01-15T15:54:54Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
Large language models (LLMs) provide faster inference, smaller memory footprints, and enables local deployment.
Two standard compression techniques are pruning and quantization, with the former eliminating redundant connections in model layers and the latter representing model parameters with fewer bits.
Existing research on LLM compression primarily focuses on performance in terms of general metrics like perplexity or downstream task accuracy.
More fine-grained metrics, such as those measuring parametric knowledge, remain significantly underexplored.
arXiv Detail & Related papers (2023-12-01T22:27:12Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
We propose an ultrafast automated model compression framework called SeerNet for flexible network deployment.
Our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.
arXiv Detail & Related papers (2023-04-13T10:52:49Z) - Does compressing activations help model parallel training? [64.59298055364336]
We present the first empirical study on the effectiveness of compression methods for model parallelism.
We implement and evaluate three common classes of compression algorithms.
We evaluate these methods across more than 160 settings and 8 popular datasets.
arXiv Detail & Related papers (2023-01-06T18:58:09Z) - Compressing Transformer-based self-supervised models for speech
processing [45.254624876127124]
We study several commonly used compression techniques, including weight pruning, head pruning, low-rank approximation, and knowledge distillation.
We report trade-off at various compression rate, including wall-clock time, the number of parameters, and the number of multiply-accumulate operations.
Our results lead to a simple combination of compression techniques that improves trade-off over recent approaches.
arXiv Detail & Related papers (2022-11-17T23:53:52Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
We study two popular model compression techniques including knowledge distillation and pruning.
We show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets.
We develop a regularization strategy for model compression based on sample uncertainty.
arXiv Detail & Related papers (2021-10-16T00:20:04Z) - Revisit Visual Representation in Analytics Taxonomy: A Compression
Perspective [69.99087941471882]
We study the problem of supporting multiple machine vision analytics tasks with the compressed visual representation.
By utilizing the intrinsic transferability among different tasks, our framework successfully constructs compact and expressive representations at low bit-rates.
In order to impose compactness in the representations, we propose a codebook-based hyperprior.
arXiv Detail & Related papers (2021-06-16T01:44:32Z) - Saliency Driven Perceptual Image Compression [6.201592931432016]
The paper demonstrates that the popularly used evaluations metrics such as MS-SSIM and PSNR are inadequate for judging the performance of image compression techniques.
A new metric is proposed, which is learned on perceptual similarity data specific to image compression.
The model not only generates images which are visually better but also gives superior performance for subsequent computer vision tasks.
arXiv Detail & Related papers (2020-02-12T13:43:17Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.