Correlation versus Dissipation in a Non-Hermitian Anderson Impurity Model
- URL: http://arxiv.org/abs/2408.03494v2
- Date: Mon, 25 Nov 2024 02:02:43 GMT
- Title: Correlation versus Dissipation in a Non-Hermitian Anderson Impurity Model
- Authors: Kazuki Yamamoto, Masaya Nakagawa, Norio Kawakami,
- Abstract summary: We develop a slave-boson theory for a non-Hermitian Anderson impurity model with one-body loss.
We unveil the mechanism of a dissipative quantum phase transition of the Kondo state on the basis of this renormalization effect.
- Score: 0.0
- License:
- Abstract: We analyze the competition between strong correlations and dissipation in quantum impurity systems from the Kondo regime to the valence fluctuation regime by developing a slave-boson theory for a non-Hermitian Anderson impurity model with one-body loss. Notably, in the non-Hermitian Kondo regime, strong correlations qualitatively change the nature of dissipation through renormalization effects, where the effective one-body loss is suppressed and emergent many-body dissipation characterized by the complex-valued hybridization is generated. We unveil the mechanism of a dissipative quantum phase transition of the Kondo state on the basis of this renormalization effect, which counterintuitively enhances the lifetime of the impurity against loss. We also find a crossover from the non-Hermitian Kondo regime to the valence fluctuation regime dominated by one-body dissipation. Our results can be tested in a wide variety of setups such as quantum dots coupled to electronic leads and quantum point contacts in ultracold Fermi gases.
Related papers
- Relevance of Anisotropy in the Kondo Effect -- Lessons From the Symplectic Case [0.0]
A Kondo model with symplectic symmetry was recently put forward as the effective low-energy theory of a superconducting-island device coupled to multiple leads.
We show that asymmetry in the coupling to the leads destabilizes the non-Fermi liquid.
Results highlight a common misconception that anisotropy in the Kondo coupling is always irrelevant.
arXiv Detail & Related papers (2024-07-16T18:01:18Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Giant rectification in strongly-interacting driven tilted systems [0.0]
Correlated quantum systems feature a wide range of nontrivial effects emerging from interactions between their constituting particles.
In nonequilibrium scenarios, these manifest in phenomena such as many-body insulating states and anomalous scaling laws of currents of conserved quantities.
We propose a giant rectification scheme based on the asymmetric interplay between strong particle interactions and a tilted potential.
arXiv Detail & Related papers (2022-09-23T16:55:09Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Unusual wave-packet spreading and entanglement dynamics in non-Hermitian
disordered many-body systems [0.0]
Non-Hermiticity and dephasing realize unconventional entanglement evolution in a disordered quantum medium.
We first consider how wave packet spreads in a non-Hermitian disordered system for demonstraing that it is very different from the Hermitian case.
We then analyze how the entanglement entropy of the system evolves in the interacting non-Hermitian model.
arXiv Detail & Related papers (2021-09-28T14:43:54Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum emulation of coherent backscattering in a system of
superconducting qubits [45.82374977939355]
We use multi-pass Landau-Zener transitions at the avoided crossing of a highly-coherent superconducting qubit to emulate weak localization (WL) and universal conductance fluctuations (UCF)
The higher coherence of this qubit enabled the realization of both effects, in contrast to earlier work arXiv:1204.6428, which successfully emulated UCF, but did not observe WL.
arXiv Detail & Related papers (2019-12-28T17:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.