Maximum a Posteriori Estimation for Linear Structural Dynamics Models Using Bayesian Optimization with Rational Polynomial Chaos Expansions
- URL: http://arxiv.org/abs/2408.03569v1
- Date: Wed, 7 Aug 2024 06:11:37 GMT
- Title: Maximum a Posteriori Estimation for Linear Structural Dynamics Models Using Bayesian Optimization with Rational Polynomial Chaos Expansions
- Authors: Felix Schneider, Iason Papaioannou, Bruno Sudret, Gerhard Müller,
- Abstract summary: We propose an extension to an existing sparse Bayesian learning approach for MAP estimation.
We introduce a Bayesian optimization approach, which allows to adaptively enrich the experimental design.
By combining the sparsity-inducing learning procedure with the experimental design, we effectively reduce the number of model evaluations.
- Score: 0.01578888899297715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian analysis enables combining prior knowledge with measurement data to learn model parameters. Commonly, one resorts to computing the maximum a posteriori (MAP) estimate, when only a point estimate of the parameters is of interest. We apply MAP estimation in the context of structural dynamic models, where the system response can be described by the frequency response function. To alleviate high computational demands from repeated expensive model calls, we utilize a rational polynomial chaos expansion (RPCE) surrogate model that expresses the system frequency response as a rational of two polynomials with complex coefficients. We propose an extension to an existing sparse Bayesian learning approach for RPCE based on Laplace's approximation for the posterior distribution of the denominator coefficients. Furthermore, we introduce a Bayesian optimization approach, which allows to adaptively enrich the experimental design throughout the optimization process of MAP estimation. Thereby, we utilize the expected improvement acquisition function as a means to identify sample points in the input space that are possibly associated with large objective function values. The acquisition function is estimated through Monte Carlo sampling based on the posterior distribution of the expansion coefficients identified in the sparse Bayesian learning process. By combining the sparsity-inducing learning procedure with the sequential experimental design, we effectively reduce the number of model evaluations in the MAP estimation problem. We demonstrate the applicability of the presented methods on the parameter updating problem of an algebraic two-degree-of-freedom system and the finite element model of a cross-laminated timber plate.
Related papers
- MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
Estimation [4.014524824655106]
MESSY estimation is a Maximum-Entropy based Gradient and Symbolic densitY estimation method.
We construct a gradient-based drift-diffusion process that connects samples of the unknown distribution function to a guess symbolic expression.
We find that the addition of a symbolic search for basis functions improves the accuracy of the estimation at a reasonable additional computational cost.
arXiv Detail & Related papers (2023-06-07T03:28:47Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
We present a model inversion algorithm, CKLEMAP, for data assimilation and parameter estimation in partial differential equation models.
The CKLEMAP method provides better scalability compared to the standard MAP method.
arXiv Detail & Related papers (2023-01-26T18:14:12Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Sparse Bayesian Learning for Complex-Valued Rational Approximations [0.03392423750246091]
Surrogate models are used to alleviate the computational burden in engineering tasks.
These models show a strongly non-linear dependence on their input parameters.
We apply a sparse learning approach to the rational approximation.
arXiv Detail & Related papers (2022-06-06T12:06:13Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
We identify a class of models for hybrid dynamical systems characterized by nonlinear autoregressive (NARX) components.
The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.
arXiv Detail & Related papers (2020-09-29T15:00:47Z) - A maximum-entropy approach to off-policy evaluation in average-reward
MDPs [54.967872716145656]
This work focuses on off-policy evaluation (OPE) with function approximation in infinite-horizon undiscounted Markov decision processes (MDPs)
We provide the first finite-sample OPE error bound, extending existing results beyond the episodic and discounted cases.
We show that this results in an exponential-family distribution whose sufficient statistics are the features, paralleling maximum-entropy approaches in supervised learning.
arXiv Detail & Related papers (2020-06-17T18:13:37Z) - A Support Detection and Root Finding Approach for Learning
High-dimensional Generalized Linear Models [10.103666349083165]
We develop a support detection and root finding procedure to learn the high dimensional sparse generalized linear models.
We conduct simulations and real data analysis to illustrate the advantages of our proposed method over several existing methods.
arXiv Detail & Related papers (2020-01-16T14:35:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.