JARViS: Detecting Actions in Video Using Unified Actor-Scene Context Relation Modeling
- URL: http://arxiv.org/abs/2408.03612v2
- Date: Tue, 17 Sep 2024 06:25:38 GMT
- Title: JARViS: Detecting Actions in Video Using Unified Actor-Scene Context Relation Modeling
- Authors: Seok Hwan Lee, Taein Son, Soo Won Seo, Jisong Kim, Jun Won Choi,
- Abstract summary: Two-stage Video localization (VAD) is a formidable task that involves the localization and classification of actions within the spatial and temporal dimensions of a video clip.
We propose a two-stage VAD framework called Joint Actor-scene context Relation modeling (JARViS)
JARViS consolidates cross-modal action semantics distributed globally across spatial and temporal dimensions using Transformer attention.
- Score: 8.463489896549161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video action detection (VAD) is a formidable vision task that involves the localization and classification of actions within the spatial and temporal dimensions of a video clip. Among the myriad VAD architectures, two-stage VAD methods utilize a pre-trained person detector to extract the region of interest features, subsequently employing these features for action detection. However, the performance of two-stage VAD methods has been limited as they depend solely on localized actor features to infer action semantics. In this study, we propose a new two-stage VAD framework called Joint Actor-scene context Relation modeling based on Visual Semantics (JARViS), which effectively consolidates cross-modal action semantics distributed globally across spatial and temporal dimensions using Transformer attention. JARViS employs a person detector to produce densely sampled actor features from a keyframe. Concurrently, it uses a video backbone to create spatio-temporal scene features from a video clip. Finally, the fine-grained interactions between actors and scenes are modeled through a Unified Action-Scene Context Transformer to directly output the final set of actions in parallel. Our experimental results demonstrate that JARViS outperforms existing methods by significant margins and achieves state-of-the-art performance on three popular VAD datasets, including AVA, UCF101-24, and JHMDB51-21.
Related papers
- VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - A Semantic and Motion-Aware Spatiotemporal Transformer Network for Action Detection [7.202931445597171]
We present a novel network that detects actions in untrimmed videos.
The network encodes the locations of action semantics in video frames utilizing motion-aware 2D positional encoding.
The approach outperforms the state-the-art solutions on four proposed datasets.
arXiv Detail & Related papers (2024-05-13T21:47:35Z) - Multi-Modal Domain Adaptation Across Video Scenes for Temporal Video
Grounding [59.599378814835205]
Temporal Video Grounding (TVG) aims to localize the temporal boundary of a specific segment in an untrimmed video based on a given language query.
We introduce a novel AMDA method to adaptively adjust the model's scene-related knowledge by incorporating insights from the target data.
arXiv Detail & Related papers (2023-12-21T07:49:27Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - Human Instance Segmentation and Tracking via Data Association and
Single-stage Detector [17.46922710432633]
Human video instance segmentation plays an important role in computer understanding of human activities.
Most current VIS methods are based on Mask-RCNN framework.
We develop a new method for human video instance segmentation based on single-stage detector.
arXiv Detail & Related papers (2022-03-31T11:36:09Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
We propose a novel framework STswinCL that explores the complementary intra- and inter-video relations to boost segmentation performance.
We extensively validate our approach on two public surgical video benchmarks, including EndoVis18 Challenge and CaDIS dataset.
Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T05:52:23Z) - Graph Convolutional Module for Temporal Action Localization in Videos [142.5947904572949]
We claim that the relations between action units play an important role in action localization.
A more powerful action detector should not only capture the local content of each action unit but also allow a wider field of view on the context related to it.
We propose a general graph convolutional module (GCM) that can be easily plugged into existing action localization methods.
arXiv Detail & Related papers (2021-12-01T06:36:59Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - Weakly Supervised Temporal Action Localization Through Learning Explicit
Subspaces for Action and Context [151.23835595907596]
Methods learn to localize temporal starts and ends of action instances in a video under only video-level supervision.
We introduce a framework that learns two feature subspaces respectively for actions and their context.
The proposed approach outperforms state-of-the-art WS-TAL methods on three benchmarks.
arXiv Detail & Related papers (2021-03-30T08:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.