Openstory++: A Large-scale Dataset and Benchmark for Instance-aware Open-domain Visual Storytelling
- URL: http://arxiv.org/abs/2408.03695v1
- Date: Wed, 7 Aug 2024 11:20:37 GMT
- Title: Openstory++: A Large-scale Dataset and Benchmark for Instance-aware Open-domain Visual Storytelling
- Authors: Zilyu Ye, Jinxiu Liu, Ruotian Peng, Jinjin Cao, Zhiyang Chen, Yiyang Zhang, Ziwei Xuan, Mingyuan Zhou, Xiaoqian Shen, Mohamed Elhoseiny, Qi Liu, Guo-Jun Qi,
- Abstract summary: We present Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text.
We also present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided.
- Score: 81.69474860607542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent image generation models excel at creating high-quality images from brief captions. However, they fail to maintain consistency of multiple instances across images when encountering lengthy contexts. This inconsistency is largely due to in existing training datasets the absence of granular instance feature labeling in existing training datasets. To tackle these issues, we introduce Openstory++, a large-scale dataset combining additional instance-level annotations with both images and text. Furthermore, we develop a training methodology that emphasizes entity-centric image-text generation, ensuring that the models learn to effectively interweave visual and textual information. Specifically, Openstory++ streamlines the process of keyframe extraction from open-domain videos, employing vision-language models to generate captions that are then polished by a large language model for narrative continuity. It surpasses previous datasets by offering a more expansive open-domain resource, which incorporates automated captioning, high-resolution imagery tailored for instance count, and extensive frame sequences for temporal consistency. Additionally, we present Cohere-Bench, a pioneering benchmark framework for evaluating the image generation tasks when long multimodal context is provided, including the ability to keep the background, style, instances in the given context coherent. Compared to existing benchmarks, our work fills critical gaps in multi-modal generation, propelling the development of models that can adeptly generate and interpret complex narratives in open-domain environments. Experiments conducted within Cohere-Bench confirm the superiority of Openstory++ in nurturing high-quality visual storytelling models, enhancing their ability to address open-domain generation tasks. More details can be found at https://openstorypp.github.io/
Related papers
- StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation [117.13475564834458]
We propose a new way of self-attention calculation, termed Consistent Self-Attention.
To extend our method to long-range video generation, we introduce a novel semantic space temporal motion prediction module.
By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos.
arXiv Detail & Related papers (2024-05-02T16:25:16Z) - TARN-VIST: Topic Aware Reinforcement Network for Visual Storytelling [14.15543866199545]
As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically.
We propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST)
In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives.
arXiv Detail & Related papers (2024-03-18T08:01:23Z) - COSMO: COntrastive Streamlined MultimOdal Model with Interleaved
Pre-Training [119.03392147066093]
Recent autoregressive vision-language models have excelled in few-shot text generation tasks but face challenges in alignment tasks.
We introduce the contrastive loss into text generation models, partitioning the language model into dedicated unimodal text processing and adept multimodal data handling components.
To bridge this gap, this work introduces VideoDatasetName, an inaugural interleaved video-text dataset featuring comprehensive captions.
arXiv Detail & Related papers (2024-01-01T18:58:42Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
We focus on a novel, yet challenging task of generating a coherent image sequence based on a given storyline, denoted as open-ended visual storytelling.
We propose a learning-based auto-regressive image generation model, termed as StoryGen, with a novel vision-language context module.
We show StoryGen can generalize to unseen characters without any optimization, and generate image sequences with coherent content and consistent character.
arXiv Detail & Related papers (2023-06-01T17:58:50Z) - Image Captioning with Multi-Context Synthetic Data [16.961112970612447]
Large models have excelled in producing high-quality images and text.
We present an innovative pipeline that introduces multi-context data generation.
Our model is exclusively trained on synthetic image-text pairs crafted through this process.
arXiv Detail & Related papers (2023-05-29T13:18:59Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.