Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction
- URL: http://arxiv.org/abs/2408.03706v1
- Date: Wed, 7 Aug 2024 11:44:32 GMT
- Title: Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction
- Authors: Benjamin Matthias Ruppik, Michael Heck, Carel van Niekerk, Renato Vukovic, Hsien-chin Lin, Shutong Feng, Marcus Zibrowius, Milica Gašić,
- Abstract summary: We introduce complexity measures of the local topology of the latent space of a contextual language model.
Our work continues a line of research that explores the manifold hypothesis for word embeddings.
- Score: 4.887047578768969
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A common approach for sequence tagging tasks based on contextual word representations is to train a machine learning classifier directly on these embedding vectors. This approach has two shortcomings. First, such methods consider single input sequences in isolation and are unable to put an individual embedding vector in relation to vectors outside the current local context of use. Second, the high performance of these models relies on fine-tuning the embedding model in conjunction with the classifier, which may not always be feasible due to the size or inaccessibility of the underlying feature-generation model. It is thus desirable, given a collection of embedding vectors of a corpus, i.e., a datastore, to find features of each vector that describe its relation to other, similar vectors in the datastore. With this in mind, we introduce complexity measures of the local topology of the latent space of a contextual language model with respect to a given datastore. The effectiveness of our features is demonstrated through their application to dialogue term extraction. Our work continues a line of research that explores the manifold hypothesis for word embeddings, demonstrating that local structure in the space carved out by word embeddings can be exploited to infer semantic properties.
Related papers
- Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos [63.94040814459116]
Self-supervised methods have shown remarkable progress in learning high-level semantics and low-level temporal correspondence.
We propose a novel semantic-aware masked slot attention on top of the fused semantic features and correspondence maps.
We adopt semantic- and instance-level temporal consistency as self-supervision to encourage temporally coherent object-centric representations.
arXiv Detail & Related papers (2023-08-19T09:12:13Z) - Grounding and Distinguishing Conceptual Vocabulary Through Similarity
Learning in Embodied Simulations [4.507860128918788]
We present a novel method for using agent experiences gathered through an embodied simulation to ground contextualized word vectors to object representations.
We use similarity learning to make comparisons between different object types based on their properties when interacted with, and to extract common features pertaining to the objects' behavior.
arXiv Detail & Related papers (2023-05-23T04:22:00Z) - Interpreting Embedding Spaces by Conceptualization [2.620130580437745]
We present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space.
We devise a new evaluation method, using either human rater or LLM-based raters, to show that the vectors indeed represent the semantics of the original latent ones.
arXiv Detail & Related papers (2022-08-22T15:32:17Z) - Compositional Generalization in Grounded Language Learning via Induced
Model Sparsity [81.38804205212425]
We consider simple language-conditioned navigation problems in a grid world environment with disentangled observations.
We design an agent that encourages sparse correlations between words in the instruction and attributes of objects, composing them together to find the goal.
Our agent maintains a high level of performance on goals containing novel combinations of properties even when learning from a handful of demonstrations.
arXiv Detail & Related papers (2022-07-06T08:46:27Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Out-of-Manifold Regularization in Contextual Embedding Space for Text
Classification [22.931314501371805]
We propose a new approach to finding and regularizing the remainder of the space, referred to as out-of-manifold.
We synthesize the out-of-manifold embeddings based on two embeddings obtained from actually-observed words.
A discriminator is trained to detect whether an input embedding is located inside the manifold or not, and simultaneously, a generator is optimized to produce new embeddings that can be easily identified as out-of-manifold.
arXiv Detail & Related papers (2021-05-14T10:17:59Z) - Low-Resource Task-Oriented Semantic Parsing via Intrinsic Modeling [65.51280121472146]
We exploit what we intrinsically know about ontology labels to build efficient semantic parsing models.
Our model is highly efficient using a low-resource benchmark derived from TOPv2.
arXiv Detail & Related papers (2021-04-15T04:01:02Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Learning Universal Representations from Word to Sentence [89.82415322763475]
This work introduces and explores the universal representation learning, i.e., embeddings of different levels of linguistic unit in a uniform vector space.
We present our approach of constructing analogy datasets in terms of words, phrases and sentences.
We empirically verify that well pre-trained Transformer models incorporated with appropriate training settings may effectively yield universal representation.
arXiv Detail & Related papers (2020-09-10T03:53:18Z) - Context based Text-generation using LSTM networks [0.5330240017302621]
The proposed model is trained to generate text for a given set of input words along with a context vector.
The results are evaluated based on the semantic closeness of the generated text to the given context.
arXiv Detail & Related papers (2020-04-30T18:39:25Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings)
Vec2graph is a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs.
arXiv Detail & Related papers (2020-03-06T18:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.