VideoQA in the Era of LLMs: An Empirical Study
- URL: http://arxiv.org/abs/2408.04223v1
- Date: Thu, 8 Aug 2024 05:14:07 GMT
- Title: VideoQA in the Era of LLMs: An Empirical Study
- Authors: Junbin Xiao, Nanxin Huang, Hangyu Qin, Dongyang Li, Yicong Li, Fengbin Zhu, Zhulin Tao, Jianxing Yu, Liang Lin, Tat-Seng Chua, Angela Yao,
- Abstract summary: Video Large Language Models (Video-LLMs) are flourishing and has advanced many video-intuitive tasks.
This work conducts a timely and comprehensive study of Video-LLMs' behavior in VideoQA.
Our analyses demonstrate that Video-LLMs excel in VideoQA; they can correlate contextual cues and generate plausible responses to questions about varied video contents.
However, models falter in handling video temporality, both in reasoning about temporal content ordering and grounding QA-relevant temporal moments.
- Score: 108.37456450182054
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video Large Language Models (Video-LLMs) are flourishing and has advanced many video-language tasks. As a golden testbed, Video Question Answering (VideoQA) plays pivotal role in Video-LLM developing. This work conducts a timely and comprehensive study of Video-LLMs' behavior in VideoQA, aiming to elucidate their success and failure modes, and provide insights towards more human-like video understanding and question answering. Our analyses demonstrate that Video-LLMs excel in VideoQA; they can correlate contextual cues and generate plausible responses to questions about varied video contents. However, models falter in handling video temporality, both in reasoning about temporal content ordering and grounding QA-relevant temporal moments. Moreover, the models behave unintuitively - they are unresponsive to adversarial video perturbations while being sensitive to simple variations of candidate answers and questions. Also, they do not necessarily generalize better. The findings demonstrate Video-LLMs' QA capability in standard condition yet highlight their severe deficiency in robustness and interpretability, suggesting the urgent need on rationales in Video-LLM developing.
Related papers
- MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - YTCommentQA: Video Question Answerability in Instructional Videos [22.673000779017595]
We present the YTCommentQA dataset, which contains naturally-generated questions from YouTube.
The dataset is categorized by their answerability and required modality to answer -- visual, script, or both.
arXiv Detail & Related papers (2024-01-30T14:18:37Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
We introduce a retrieval-based video language model (R-VLM) for efficient and interpretable long video QA.
Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks.
Our experimental results validate the effectiveness of our framework for comprehending long videos.
arXiv Detail & Related papers (2023-12-08T09:48:36Z) - FunQA: Towards Surprising Video Comprehension [64.58663825184958]
We introduce FunQA, a challenging video question-answering dataset.
FunQA covers three previously unexplored types of surprising videos: HumorQA, CreativeQA, and MagicQA.
In total, the FunQA benchmark consists of 312K free-text QA pairs derived from 4.3K video clips.
arXiv Detail & Related papers (2023-06-26T17:59:55Z) - Invariant Grounding for Video Question Answering [72.87173324555846]
Video Question Answering (VideoQA) is the task of answering questions about a video.
In leading VideoQA models, the typical learning objective, empirical risk minimization (ERM), latches on superficial correlations between video-question pairs and answers.
We propose a new learning framework, Invariant Grounding for VideoQA (IGV), to ground the question-critical scene.
arXiv Detail & Related papers (2022-06-06T04:37:52Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark.
We set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension.
We find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning.
arXiv Detail & Related papers (2021-05-18T04:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.