TheGlueNote: Learned Representations for Robust and Flexible Note Alignment
- URL: http://arxiv.org/abs/2408.04309v1
- Date: Thu, 8 Aug 2024 08:42:30 GMT
- Title: TheGlueNote: Learned Representations for Robust and Flexible Note Alignment
- Authors: Silvan David Peter, Gerhard Widmer,
- Abstract summary: We show how a transformer encoder network - TheGlueNote - predicts pairwise note similarities for two 512 note subsequences.
Our approach performs on par with the state of the art in terms of note alignment accuracy, is considerably more robust to version mismatches, and works directly on any pair of MIDI files.
- Score: 3.997809845676912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Note alignment refers to the task of matching individual notes of two versions of the same symbolically encoded piece. Methods addressing this task commonly rely on sequence alignment algorithms such as Hidden Markov Models or Dynamic Time Warping (DTW) applied directly to note or onset sequences. While successful in many cases, such methods struggle with large mismatches between the versions. In this work, we learn note-wise representations from data augmented with various complex mismatch cases, e.g. repeats, skips, block insertions, and long trills. At the heart of our approach lies a transformer encoder network - TheGlueNote - which predicts pairwise note similarities for two 512 note subsequences. We postprocess the predicted similarities using flavors of weightedDTW and pitch-separated onsetDTW to retrieve note matches for two sequences of arbitrary length. Our approach performs on par with the state of the art in terms of note alignment accuracy, is considerably more robust to version mismatches, and works directly on any pair of MIDI files.
Related papers
- PosFormer: Recognizing Complex Handwritten Mathematical Expression with Position Forest Transformer [51.260384040953326]
Handwritten Mathematical Expression Recognition (HMER) has wide applications in human-machine interaction scenarios.
We propose a position forest transformer (PosFormer) for HMER, which jointly optimize two tasks: expression recognition and position recognition.
PosFormer consistently outperforms the state-of-the-art methods 2.03%/1.22%/2, 1.83%, and 4.62% gains on datasets.
arXiv Detail & Related papers (2024-07-10T15:42:58Z) - Perception and Semantic Aware Regularization for Sequential Confidence
Calibration [12.265757315192497]
We propose a Perception and Semantic aware Sequence Regularization framework.
We introduce a semantic context-free recognition and a language model to acquire similar sequences with high perceptive similarities and semantic correlation.
Experiments on canonical sequence recognition tasks, including scene text and speech recognition, demonstrate that our method sets novel state-of-the-art results.
arXiv Detail & Related papers (2023-05-31T02:16:29Z) - A Framework for Bidirectional Decoding: Case Study in Morphological
Inflection [4.602447284133507]
We propose a framework for decoding sequences from the "outside-in"
At each step, the model chooses to generate a token on the left, on the right, or join the left and right sequences.
Our model sets state-of-the-art (SOTA) on the 2022 and 2023 shared tasks, beating the next best systems by over 4.7 and 2.7 points in average accuracy respectively.
arXiv Detail & Related papers (2023-05-21T22:08:31Z) - When Counting Meets HMER: Counting-Aware Network for Handwritten
Mathematical Expression Recognition [57.51793420986745]
We propose an unconventional network for handwritten mathematical expression recognition (HMER) named Counting-Aware Network (CAN)
We design a weakly-supervised counting module that can predict the number of each symbol class without the symbol-level position annotations.
Experiments on the benchmark datasets for HMER validate that both joint optimization and counting results are beneficial for correcting the prediction errors of encoder-decoder models.
arXiv Detail & Related papers (2022-07-23T08:39:32Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
This paper argues that learning by contextually comparing sequence-to-sequence distinctions offers an essential inductive bias in weakly-supervised action localization.
Under a differentiable dynamic programming formulation, two complementary contrastive objectives are designed, including Fine-grained Sequence Distance (FSD) contrasting and Longest Common Subsequence (LCS) contrasting.
Our method achieves state-of-the-art performance on two popular benchmarks.
arXiv Detail & Related papers (2022-03-31T05:13:50Z) - Drop-DTW: Aligning Common Signal Between Sequences While Dropping
Outliers [33.174893836302005]
We introduce Drop-DTW, a novel algorithm that aligns the common signal between the sequences while automatically dropping the outlier elements from the matching.
In our experiments, we show that Drop-DTW is a robust similarity measure for sequence retrieval and demonstrate its effectiveness as a training loss on diverse applications.
arXiv Detail & Related papers (2021-08-26T18:52:35Z) - CopyNext: Explicit Span Copying and Alignment in Sequence to Sequence
Models [31.832217465573503]
We present a model with an explicit token-level copy operation and extend it to copying entire spans.
Our model provides hard alignments between spans in the input and output, allowing for nontraditional applications of seq2seq, like information extraction.
arXiv Detail & Related papers (2020-10-28T22:45:16Z) - Fast Interleaved Bidirectional Sequence Generation [90.58793284654692]
We introduce a decoder that generates target words from the left-to-right and right-to-left directions simultaneously.
We show that we can easily convert a standard architecture for unidirectional decoding into a bidirectional decoder.
Our interleaved bidirectional decoder (IBDecoder) retains the model simplicity and training efficiency of the standard Transformer.
arXiv Detail & Related papers (2020-10-27T17:38:51Z) - Semantic Label Smoothing for Sequence to Sequence Problems [54.758974840974425]
We propose a technique that smooths over emphwell formed relevant sequences that have sufficient n-gram overlap with the target sequence.
Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.
arXiv Detail & Related papers (2020-10-15T00:31:15Z) - Consistent Multiple Sequence Decoding [36.46573114422263]
We introduce a consistent multiple sequence decoding architecture.
This architecture allows for consistent and simultaneous decoding of an arbitrary number of sequences.
We show the efficacy of our consistent multiple sequence decoder on the task of dense relational image captioning.
arXiv Detail & Related papers (2020-04-02T00:43:54Z) - Hard Non-Monotonic Attention for Character-Level Transduction [65.17388794270694]
We introduce an exact, exponential-time algorithm for marginalizing over a number of non-monotonic alignments between two strings.
We compare soft and hard non-monotonic attention experimentally and find that the exact algorithm significantly improves performance over the approximation and outperforms soft attention.
arXiv Detail & Related papers (2018-08-29T20:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.