Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
- URL: http://arxiv.org/abs/2408.04315v1
- Date: Thu, 8 Aug 2024 08:48:54 GMT
- Title: Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
- Authors: Wei Huo, Changxin Liu, Kemi Ding, Karl Henrik Johansson, Ling Shi,
- Abstract summary: We introduce a federated learning algorithm called Differentially Private Federated Cubic Regularized Newton (DP-FCRN)
By leveraging second-order techniques, our algorithm achieves lower iteration complexity compared to first-order methods.
We also incorporate noise perturbation during local computations to ensure privacy.
- Score: 10.396575601912673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the use of the cubic-regularized Newton method within a federated learning framework while addressing two major concerns that commonly arise in federated learning: privacy leakage and communication bottleneck. We introduce a federated learning algorithm called Differentially Private Federated Cubic Regularized Newton (DP-FCRN). By leveraging second-order techniques, our algorithm achieves lower iteration complexity compared to first-order methods. We also incorporate noise perturbation during local computations to ensure privacy. Furthermore, we employ sparsification in uplink transmission, which not only reduces the communication costs but also amplifies the privacy guarantee. Specifically, this approach reduces the necessary noise intensity without compromising privacy protection. We analyze the convergence properties of our algorithm and establish the privacy guarantee. Finally, we validate the effectiveness of the proposed algorithm through experiments on a benchmark dataset.
Related papers
- TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives [10.528569272279999]
This paper proposes a differentially private federated learning algorithm for strongly convex but possibly nonsmooth problems.
The proposed algorithm adds artificial noise to the shared information to ensure privacy and dynamically allocates the time-varying noise variance to minimize an upper bound of the optimization error.
Numerical results show the superiority of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2023-08-02T13:30:33Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - From Noisy Fixed-Point Iterations to Private ADMM for Centralized and
Federated Learning [4.202534541804858]
We study differentially private (DP) machine learning algorithms as instances of noisy fixed-point iterations.
We establish strong privacy guarantees leveraging privacy amplification by and by subsampling.
We provide utility guarantees using a unified analysis that exploits a recent linear convergence result for noisy fixed-point iterations.
arXiv Detail & Related papers (2023-02-24T10:24:03Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Privacy-preserving Decentralized Aggregation for Federated Learning [3.9323226496740733]
Federated learning is a promising framework for learning over decentralized data spanning multiple regions.
We develop a privacy-preserving decentralized aggregation protocol for federated learning.
We evaluate our algorithm on image classification and next-word prediction applications over benchmark datasets with 9 and 15 distributed sites.
arXiv Detail & Related papers (2020-12-13T23:45:42Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps.
We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-Database learning algorithms.
We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization.
arXiv Detail & Related papers (2020-07-18T09:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.