reCSE: Portable Reshaping Features for Sentence Embedding in Self-supervised Contrastive Learning
- URL: http://arxiv.org/abs/2408.04975v4
- Date: Mon, 26 Aug 2024 07:48:19 GMT
- Title: reCSE: Portable Reshaping Features for Sentence Embedding in Self-supervised Contrastive Learning
- Authors: Fufangchen Zhao, Jian Gao, Danfeng Yan,
- Abstract summary: We propose reCSE, a self supervised contrastive learning sentence representation framework based on feature reshaping.
This framework is different from the current advanced models that use discrete data augmentation methods.
Our reCSE has achieved competitive performance in semantic similarity tasks.
- Score: 1.4604134018640291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose reCSE, a self supervised contrastive learning sentence representation framework based on feature reshaping. This framework is different from the current advanced models that use discrete data augmentation methods, but instead reshapes the input features of the original sentence, aggregates the global information of each token in the sentence, and alleviates the common problems of representation polarity and GPU memory consumption linear increase in current advanced models. In addition, our reCSE has achieved competitive performance in semantic similarity tasks. And the experiment proves that our proposed feature reshaping method has strong universality, which can be transplanted to other self supervised contrastive learning frameworks and enhance their representation ability, even achieving state-of-the-art performance. Our code is available at https://github.com/heavenhellchen/reCSE.
Related papers
- ReconBoost: Boosting Can Achieve Modality Reconcilement [89.4377895465204]
We study the modality-alternating learning paradigm to achieve reconcilement.
We propose a new method called ReconBoost to update a fixed modality each time.
We show that the proposed method resembles Friedman's Gradient-Boosting (GB) algorithm, where the updated learner can correct errors made by others.
arXiv Detail & Related papers (2024-05-15T13:22:39Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Gramian Attention Heads are Strong yet Efficient Vision Learners [26.79263390835444]
We introduce a novel architecture design that enhances expressiveness by incorporating multiple head classifiers (ie, classification heads)
Our approach employs attention-based aggregation, utilizing pairwise feature similarity to enhance multiple lightweight heads with minimal resource overhead.
Our models eventually surpass state-of-the-art CNNs and ViTs regarding the accuracy-grained trade-off on ImageNet-1K.
arXiv Detail & Related papers (2023-10-25T09:08:58Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
We present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue.
Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting.
arXiv Detail & Related papers (2023-05-09T11:00:02Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Rank-N-Contrast: Learning Continuous Representations for Regression [28.926518084216607]
Rank-N-Contrast (RNC) is a framework that learns continuous representations for regression by contrasting samples against each other based on their rankings in the target space.
RNC guarantees the desired order of learned representations in accordance with the target orders.
RNC achieves state-of-the-art performance, highlighting its intriguing properties including better data efficiency, robustness to spurious targets and data corruptions.
arXiv Detail & Related papers (2022-10-03T19:00:38Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
We propose an innovative autoencoder network by learning Aligned Cross-Modal Representations (dubbed ACMR) for Generalized Zero-Shot Classification (GZSC)
Specifically, we propose a novel Vision-Semantic Alignment (VSA) method to strengthen the alignment of cross-modal latent features on the latent subspaces guided by a learned classifier.
In addition, we propose a novel Information Enhancement Module (IEM) to reduce the possibility of latent variables collapse meanwhile encouraging the discriminative ability of latent variables.
arXiv Detail & Related papers (2021-12-24T03:35:37Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.