Collaborative Static-Dynamic Teaching: A Semi-Supervised Framework for Stripe-Like Space Target Detection
- URL: http://arxiv.org/abs/2408.05029v1
- Date: Fri, 9 Aug 2024 12:33:27 GMT
- Title: Collaborative Static-Dynamic Teaching: A Semi-Supervised Framework for Stripe-Like Space Target Detection
- Authors: Zijian Zhu, Ali Zia, Xuesong Li, Bingbing Dan, Yuebo Ma, Hongfeng Long, Kaili Lu, Enhai Liu, Rujin Zhao,
- Abstract summary: Stripe-like space target detection is crucial for space situational awareness.
Traditional unsupervised methods often fail in low signal-to-noise ratio and variable stripe-like space targets scenarios.
We introduce an innovative Collaborative Static-Dynamic Teacher (CSDT) SSL framework, which includes static and dynamic teacher models as well as a student model.
We also present MSSA-Net, a novel SSTD network featuring a multi-scale dual-path convolution (MDPC) block and a feature map weighted attention (FMWA) block.
- Score: 2.9133687889451023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stripe-like space target detection (SSTD) is crucial for space situational awareness. Traditional unsupervised methods often fail in low signal-to-noise ratio and variable stripe-like space targets scenarios, leading to weak generalization. Although fully supervised learning methods improve model generalization, they require extensive pixel-level labels for training. In the SSTD task, manually creating these labels is often inaccurate and labor-intensive. Semi-supervised learning (SSL) methods reduce the need for these labels and enhance model generalizability, but their performance is limited by pseudo-label quality. To address this, we introduce an innovative Collaborative Static-Dynamic Teacher (CSDT) SSL framework, which includes static and dynamic teacher models as well as a student model. This framework employs a customized adaptive pseudo-labeling (APL) strategy, transitioning from initial static teaching to adaptive collaborative teaching, guiding the student model's training. The exponential moving average (EMA) mechanism further enhances this process by feeding new stripe-like knowledge back to the dynamic teacher model through the student model, creating a positive feedback loop that continuously enhances the quality of pseudo-labels. Moreover, we present MSSA-Net, a novel SSTD network featuring a multi-scale dual-path convolution (MDPC) block and a feature map weighted attention (FMWA) block, designed to extract diverse stripe-like features within the CSDT SSL training framework. Extensive experiments verify the state-of-the-art performance of our framework on the AstroStripeSet and various ground-based and space-based real-world datasets.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - SSTD: Stripe-Like Space Target Detection Using Single-Point Weak Supervision [3.1531267517553587]
Stripe-like space target detection (SSTD) plays a key role in enhancing space situational awareness and assessing spacecraft behaviour.
We introduce AstroStripeSet', a pioneering dataset designed for SSTD, aiming to bridge the gap in academic resources and advance research in SSTD.
We propose a novel teacher-student label evolution framework with single-point weak supervision, providing a new solution to the challenges of manual labeling.
arXiv Detail & Related papers (2024-07-25T15:02:24Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Hierarchical Supervision and Shuffle Data Augmentation for 3D
Semi-Supervised Object Detection [90.32180043449263]
State-of-the-art 3D object detectors are usually trained on large-scale datasets with high-quality 3D annotations.
A natural remedy is to adopt semi-supervised learning (SSL) by leveraging a limited amount of labeled samples and abundant unlabeled samples.
This paper introduces a novel approach of Hierarchical Supervision and Shuffle Data Augmentation (HSSDA), which is a simple yet effective teacher-student framework.
arXiv Detail & Related papers (2023-04-04T02:09:32Z) - Confidence-Aware Paced-Curriculum Learning by Label Smoothing for
Surgical Scene Understanding [33.62888947753327]
We design a curriculum by label smoothing (P-CBLS) using paced learning with uniform label smoothing (ULS) for classification tasks and fuse uniform and spatially varying label smoothing (SVLS) for semantic segmentation tasks in a curriculum manner.
We set a bigger smoothing value at the beginning of training and gradually decreased it to zero to control the model learning utility from lower to higher.
The proposed techniques are validated on four robotic surgery datasets.
arXiv Detail & Related papers (2022-12-22T07:19:15Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - An EM Framework for Online Incremental Learning of Semantic Segmentation [37.94734474090863]
We propose an incremental learning strategy that can adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only.
We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods.
arXiv Detail & Related papers (2021-08-08T11:30:09Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.