Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models
- URL: http://arxiv.org/abs/2408.05093v2
- Date: Fri, 16 Aug 2024 22:58:20 GMT
- Title: Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models
- Authors: Zikai Xie,
- Abstract summary: Large language models (LLMs) have generated significant attention since their inception, finding applications across various academic and industrial domains.
LLMs often suffer from the "hallucination problem", where outputs, though grammatically and logically coherent, lack factual accuracy or are entirely fabricated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have generated significant attention since their inception, finding applications across various academic and industrial domains. However, these models often suffer from the "hallucination problem", where outputs, though grammatically and logically coherent, lack factual accuracy or are entirely fabricated. A particularly troubling issue discovered and widely discussed recently is the numerical comparison error where multiple LLMs incorrectly infer that "9.11$>$9.9". We discovered that the order in which LLMs generate answers and reasoning impacts their consistency. Specifically, results vary significantly when an LLM generates an answer first and then provides the reasoning versus generating the reasoning process first and then the conclusion. Inspired by this, we propose a new benchmark method for assessing LLM consistency: comparing responses generated through these two different approaches. This benchmark effectively identifies instances where LLMs fabricate answers and subsequently generate justifications. Furthermore, we introduce a novel and straightforward prompt strategy designed to mitigate this issue. Experimental results demonstrate that this strategy improves performance across various LLMs compared to direct questioning. This work not only sheds light on a critical flaw in LLMs but also offers a practical solution to enhance their reliability.
Related papers
- Do LLMs Understand Ambiguity in Text? A Case Study in Open-world Question Answering [15.342415325821063]
Ambiguity in natural language poses significant challenges to Large Language Models (LLMs) used for open-domain question answering.
We compare off-the-shelf and few-shot LLM performance, focusing on measuring the impact of explicit disambiguation strategies.
We demonstrate how simple, training-free, token-level disambiguation methods may be effectively used to improve LLM performance for ambiguous question answering tasks.
arXiv Detail & Related papers (2024-11-19T10:27:26Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
Large language models (LLMs) have shown strong reasoning ability in several natural language processing tasks.
LLMs with chain of thought (CoT) prompting require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes.
We propose and prove that LLMs also have similar self-verification abilities.
arXiv Detail & Related papers (2022-12-19T15:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.