DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts
- URL: http://arxiv.org/abs/2408.05346v3
- Date: Fri, 4 Oct 2024 01:07:58 GMT
- Title: DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts
- Authors: Mohammed Saidul Islam, Md Tahmid Rahman Laskar, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty,
- Abstract summary: We introduce a novel task for data story generation and a benchmark containing 1,449 stories from diverse sources.
To address the challenges of crafting coherent data stories, we propose a multiagent framework employing two LLM agents.
While our agentic framework generally outperforms non-agentic counterparts in both model-based and human evaluations, the results also reveal unique challenges in data story generation.
- Score: 27.218934418961197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven storytelling is a powerful method for conveying insights by combining narrative techniques with visualizations and text. These stories integrate visual aids, such as highlighted bars and lines in charts, along with textual annotations explaining insights. However, creating such stories requires a deep understanding of the data and meticulous narrative planning, often necessitating human intervention, which can be time-consuming and mentally taxing. While Large Language Models (LLMs) excel in various NLP tasks, their ability to generate coherent and comprehensive data stories remains underexplored. In this work, we introduce a novel task for data story generation and a benchmark containing 1,449 stories from diverse sources. To address the challenges of crafting coherent data stories, we propose a multiagent framework employing two LLM agents designed to replicate the human storytelling process: one for understanding and describing the data (Reflection), generating the outline, and narration, and another for verification at each intermediary step. While our agentic framework generally outperforms non-agentic counterparts in both model-based and human evaluations, the results also reveal unique challenges in data story generation.
Related papers
- Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Improving Visual Storytelling with Multimodal Large Language Models [1.325953054381901]
This paper presents a novel approach leveraging large language models (LLMs) and large vision-language models (LVLMs)
We introduce a new dataset comprising diverse visual stories, annotated with detailed captions and multimodal elements.
Our method employs a combination of supervised and reinforcement learning to fine-tune the model, enhancing its narrative generation capabilities.
arXiv Detail & Related papers (2024-07-02T18:13:55Z) - TARN-VIST: Topic Aware Reinforcement Network for Visual Storytelling [14.15543866199545]
As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically.
We propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST)
In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives.
arXiv Detail & Related papers (2024-03-18T08:01:23Z) - Feature-Action Design Patterns for Storytelling Visualizations with Time
Series Data [14.417710088310784]
We present a method to create storytelling visualization with time series data.
Motivated by the need to communicate time series data during the COVID-19 pandemic, we developed a novel computer-assisted method for meta-authoring of stories.
arXiv Detail & Related papers (2024-02-05T15:45:59Z) - Text-Only Training for Visual Storytelling [107.19873669536523]
We formulate visual storytelling as a visual-conditioned story generation problem.
We propose a text-only training method that separates the learning of cross-modality alignment and story generation.
arXiv Detail & Related papers (2023-08-17T09:32:17Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
We focus on a novel, yet challenging task of generating a coherent image sequence based on a given storyline, denoted as open-ended visual storytelling.
We propose a learning-based auto-regressive image generation model, termed as StoryGen, with a novel vision-language context module.
We show StoryGen can generalize to unseen characters without any optimization, and generate image sequences with coherent content and consistent character.
arXiv Detail & Related papers (2023-06-01T17:58:50Z) - StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story
Continuation [76.44802273236081]
We develop a model StoryDALL-E for story continuation, where the generated visual story is conditioned on a source image.
We show that our retro-fitting approach outperforms GAN-based models for story continuation and facilitates copying of visual elements from the source image.
Overall, our work demonstrates that pretrained text-to-image synthesis models can be adapted for complex and low-resource tasks like story continuation.
arXiv Detail & Related papers (2022-09-13T17:47:39Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story
Generation [48.56586847883825]
We introduce a dataset and evaluation platform built from STORIUM, an online collaborative storytelling community.
Our dataset contains 6K lengthy stories with fine-grained natural language annotations interspersed throughout each narrative.
We evaluate language models fine-tuned on our dataset by integrating them onto STORIUM, where real authors can query a model for suggested story continuations and then edit them.
arXiv Detail & Related papers (2020-10-04T23:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.