PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound
- URL: http://arxiv.org/abs/2408.05372v1
- Date: Fri, 9 Aug 2024 22:49:19 GMT
- Title: PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound
- Authors: Hao Li, Baris Oguz, Gabriel Arenas, Xing Yao, Jiacheng Wang, Alison Pouch, Brett Byram, Nadav Schwartz, Ipek Oguz,
- Abstract summary: Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes.
Manual segmentation is the gold standard, but it is time-consuming and subjective.
We propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time.
- Score: 6.249772260759159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes. Manual segmentation is the gold standard, but it is time-consuming and subjective. Although fully automated deep learning algorithms perform well, they do not always yield high-quality results for each case. Interactive segmentation models could address this issue. However, there is limited work on interactive segmentation models for the placenta. Despite their segmentation accuracy, these methods may not be feasible for clinical use as they require relatively large computational power which may be especially prohibitive in low-resource environments, or on mobile devices. In this paper, we propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time. The proposed model adopts the segmentation from our fully automated model for initialization and is designed in a human-in-the-loop manner to achieve iterative improvements. The Dice score and normalized surface Dice are used as evaluation metrics. The results show that our model can achieve superior performance in segmentation compared to state-of-the-art models while using significantly fewer parameters. Additionally, the proposed model is much faster for inference and robust to poor initial masks. The code is available at https://github.com/MedICL-VU/PRISM-placenta.
Related papers
- Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques.
We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels.
This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset.
arXiv Detail & Related papers (2024-07-23T00:04:10Z) - Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images [6.249772260759159]
Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes.
We evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task.
arXiv Detail & Related papers (2024-07-10T19:58:26Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - BeSt-LeS: Benchmarking Stroke Lesion Segmentation using Deep Supervision [0.0]
We consider the publicly available dataset ATLAS $v2.0$ to benchmark various end-to-end supervised U-Net style models.
Specifically, we have benchmarked models on both 2D and 3D brain images and evaluated them using standard metrics.
arXiv Detail & Related papers (2023-10-10T22:54:01Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
This paper proposes a tumor segmentation model MPU-Net for patient volume CT images.
It is inspired by Transformer with a global attention mechanism.
Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results.
arXiv Detail & Related papers (2023-07-11T20:46:19Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.