Multimodal generative semantic communication based on latent diffusion model
- URL: http://arxiv.org/abs/2408.05455v1
- Date: Sat, 10 Aug 2024 06:23:41 GMT
- Title: Multimodal generative semantic communication based on latent diffusion model
- Authors: Weiqi Fu, Lianming Xu, Xin Wu, Haoyang Wei, Li Wang,
- Abstract summary: This paper introduces a multimodal generative semantic communication framework named mm-GESCO.
The framework ingests streams of visible and infrared modal image data, generates fused semantic segmentation maps, and transmits them.
At the receiving end, the framework can reconstruct the original multimodal images based on the semantic maps.
- Score: 13.035207938169844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In emergencies, the ability to quickly and accurately gather environmental data and command information, and to make timely decisions, is particularly critical. Traditional semantic communication frameworks, primarily based on a single modality, are susceptible to complex environments and lighting conditions, thereby limiting decision accuracy. To this end, this paper introduces a multimodal generative semantic communication framework named mm-GESCO. The framework ingests streams of visible and infrared modal image data, generates fused semantic segmentation maps, and transmits them using a combination of one-hot encoding and zlib compression techniques to enhance data transmission efficiency. At the receiving end, the framework can reconstruct the original multimodal images based on the semantic maps. Additionally, a latent diffusion model based on contrastive learning is designed to align different modal data within the latent space, allowing mm-GESCO to reconstruct latent features of any modality presented at the input. Experimental results demonstrate that mm-GESCO achieves a compression ratio of up to 200 times, surpassing the performance of existing semantic communication frameworks and exhibiting excellent performance in downstream tasks such as object classification and detection.
Related papers
- Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - Enhancing Label-efficient Medical Image Segmentation with Text-guided Diffusion Models [5.865983529245793]
TextDiff improves semantic representation through inexpensive medical text annotations.
We show that TextDiff is significantly superior to the state-of-the-art multi-modal segmentation methods with only a few training samples.
arXiv Detail & Related papers (2024-07-07T10:21:08Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and
Multi-Clients [32.59184269562571]
We propose a multi-modal collaborative diffusion federated learning framework called FedDiff.
Our framework establishes a dual-branch diffusion model feature extraction setup, where the two modal data are inputted into separate branches of the encoder.
Considering the challenge of private and efficient communication between multiple clients, we embed the diffusion model into the federated learning communication structure.
arXiv Detail & Related papers (2023-11-16T02:29:37Z) - FOCAL: Contrastive Learning for Multimodal Time-Series Sensing Signals
in Factorized Orthogonal Latent Space [7.324708513042455]
This paper proposes a novel contrastive learning framework, called FOCAL, for extracting comprehensive features from multimodal time-series sensing signals.
It consistently outperforms the state-of-the-art baselines in downstream tasks with a clear margin.
arXiv Detail & Related papers (2023-10-30T22:55:29Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
We propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process.
We show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks.
arXiv Detail & Related papers (2023-08-18T05:03:48Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Generative Semantic Communication: Diffusion Models Beyond Bit Recovery [19.088596386865106]
We propose a novel generative diffusion-guided framework for semantic communication.
We reduce bandwidth usage by sending highly-compressed semantic information only.
Our results show that objects, locations, and depths are still recognizable even in the presence of extremely noisy conditions.
arXiv Detail & Related papers (2023-06-07T10:36:36Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.