Phase Transition in the Quantum Capacity of Quantum Channels
- URL: http://arxiv.org/abs/2408.05733v4
- Date: Sat, 09 Nov 2024 15:49:01 GMT
- Title: Phase Transition in the Quantum Capacity of Quantum Channels
- Authors: Shayan Roofeh, Vahid Karimipour,
- Abstract summary: We prove that every quantum channel $Lambda$ in arbitrary dimension, when contaminated by white noise, completely loses its capacity of transmitting quantum states.
We also find the quantum capacity of the complement of the depolarizing channel in closed form.
- Score: 0.0
- License:
- Abstract: Determining the capacities of quantum channels is one of the fundamental problems of quantum information theory. This problem is extremely challenging and technically difficult, allowing only lower and upper bounds to be calculated for certain types of channels. In this paper, we prove that every quantum channel $\Lambda$ in arbitrary dimension, when contaminated by white noise in the form $\Lambda_x(\rho)=(1-x)\Lambda(\rho)+x\tr(\rho) \frac{I}{d}$, completely loses its capacity of transmitting quantum states when $x\geq \frac{1}{2}$, no matter what type of encoding and decoding is used. In other words, the quantum capacity of the channel vanishes in this region. To show this, we find a channel ${\cal N}_x$, which anti-degrades the depolarizing channel when $x\geq \frac{1}{2}$. We also find the quantum capacity of the complement of the depolarizing channel in closed form. Besides the erasure channel, this is the only example of a parameteric channel in arbitrary dimension for which the quantum capacity has been calculated in closed form.
Related papers
- General Communication Enhancement via the Quantum Switch [15.779145740528417]
We conjecture that $mathcalP_n>0$ is both a necessary and sufficient condition for communication enhancement via the quantum $tt SWITCH$.
We then formulate a communication protocol involving the quantum $tt SWITCH$ which enhances the private capacity of the BB84 channel.
arXiv Detail & Related papers (2024-07-03T00:47:13Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - The superadditivity effects of quantum capacity decrease with the
dimension for qudit depolarizing channels [0.0]
We study how the gain in quantum capacity of qudit depolarizing channels relates to the dimension of the systems considered.
We conclude that when high dimensional qudits experiencing depolarizing noise are considered, the coherent information of the channel is not only an achievable rate but essentially the maximum possible rate for any quantum block code.
arXiv Detail & Related papers (2023-01-24T16:54:09Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Quantum dynamics is not strictly bidivisible [0.0]
We show that for the qubit, those channels textitdo not exist, whereas for general finite-dimensional quantum channels the same holds at least for full Kraus rank channels.
We introduce a novel decomposition of quantum channels which separates them in a boundary and Markovian part, and it holds for any finite dimension.
arXiv Detail & Related papers (2022-03-25T05:20:09Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Dephasing superchannels [0.09545101073027092]
We characterise a class of environmental noises that decrease coherent properties of quantum channels by introducing and analysing the properties of dephasing superchannels.
These are defined as superchannels that affect only non-classical properties of a quantum channel $mathcalE$.
We prove that such superchannels $Xi_C$ form a particular subclass of Schur-product supermaps that act on the Jamiolkowski state $J(mathcalE)$ of a channel $mathcalE$ via a Schur product, $J'=J
arXiv Detail & Related papers (2021-07-14T10:10:46Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Channel State Masking [78.7611537027573]
Communication over a quantum channel that depends on a quantum state is considered when the encoder has channel side information (CSI) and is required to mask information on the quantum channel state from the decoder.
A full characterization is established for the entanglement-assisted masking equivocation region, and a regularized formula is given for the quantum capacity-leakage function without assistance.
arXiv Detail & Related papers (2020-06-10T16:18:03Z) - Bosonic quantum communication across arbitrarily high loss channels [68.58838842613457]
A general attenuator $Phi_lambda, sigma$ is a bosonic quantum channel that acts by combining the input with a fixed environment state.
We show that for any arbitrary value of $lambda>0$ there exists a suitable single-mode state $sigma(lambda)$.
Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity.
arXiv Detail & Related papers (2020-03-19T16:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.