SABER-6D: Shape Representation Based Implicit Object Pose Estimation
- URL: http://arxiv.org/abs/2408.05867v2
- Date: Mon, 2 Sep 2024 13:39:30 GMT
- Title: SABER-6D: Shape Representation Based Implicit Object Pose Estimation
- Authors: Shishir Reddy Vutukur, Mengkejiergeli Ba, Benjamin Busam, Matthias Kayser, Gurprit Singh,
- Abstract summary: We propose a novel encoder-decoder architecture, named SABER, to learn the 6D pose of the object in the embedding space.
We perform shape representation as an auxiliary task which helps us in learning rotations space for an object based on 2D images.
- Score: 15.744920692895919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel encoder-decoder architecture, named SABER, to learn the 6D pose of the object in the embedding space by learning shape representation at a given pose. This model enables us to learn pose by performing shape representation at a target pose from RGB image input. We perform shape representation as an auxiliary task which helps us in learning rotations space for an object based on 2D images. An image encoder predicts the rotation in the embedding space and the DeepSDF based decoder learns to represent the object's shape at the given pose. As our approach is shape based, the pipeline is suitable for any type of object irrespective of the symmetry. Moreover, we need only a CAD model of the objects to train SABER. Our pipeline is synthetic data based and can also handle symmetric objects without symmetry labels and, thus, no additional labeled training data is needed. The experimental evaluation shows that our method achieves close to benchmark results for both symmetric objects and asymmetric objects on Occlusion-LineMOD, and T-LESS datasets.
Related papers
- MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
We present an approach to estimating the continuous 6-DoF pose of an object from a single RGB image.
The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model.
We show that our approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios.
arXiv Detail & Related papers (2022-04-12T15:03:51Z) - Category-Level Metric Scale Object Shape and Pose Estimation [73.92460712829188]
We propose a framework that jointly estimates a metric scale shape and pose from a single RGB image.
We validated our method on both synthetic and real-world datasets to evaluate category-level object pose and shape.
arXiv Detail & Related papers (2021-09-01T12:16:46Z) - Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose
Estimation [44.8872454995923]
We present a novel approach for scalable 6D pose estimation, by self-supervised learning on synthetic data of multiple objects using a single autoencoder.
We test our method on two multi-object benchmarks with real data, T-LESS and NOCS REAL275, and show it outperforms existing RGB-based methods in terms of pose estimation accuracy and generalization.
arXiv Detail & Related papers (2021-07-27T01:55:30Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image.
Our framework makes inferences based on the rich geometric information of the object in the depth channel alone.
Our framework competes with state-of-the-art approaches that require labeled real-world images.
arXiv Detail & Related papers (2021-06-27T10:41:50Z) - Sparse Pose Trajectory Completion [87.31270669154452]
We propose a method to learn, even using a dataset where objects appear only in sparsely sampled views.
This is achieved with a cross-modal pose trajectory transfer mechanism.
Our method is evaluated on the Pix3D and ShapeNet datasets.
arXiv Detail & Related papers (2021-05-01T00:07:21Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.