An Analysis for Image-to-Image Translation and Style Transfer
- URL: http://arxiv.org/abs/2408.06000v1
- Date: Mon, 12 Aug 2024 08:49:00 GMT
- Title: An Analysis for Image-to-Image Translation and Style Transfer
- Authors: Xiaoming Yu, Jie Tian, Zhenhua Hu,
- Abstract summary: We introduce the differences and connections between image-to-image translation and style transfer.
The entire discussion process involves the concepts, forms, training modes, evaluation processes, and visualization results.
- Score: 7.074445137050722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of generative technologies in deep learning, a large number of image-to-image translation and style transfer models have emerged at an explosive rate in recent years. These two technologies have made significant progress and can generate realistic images. However, many communities tend to confuse the two, because both generate the desired image based on the input image and both cover the two definitions of content and style. In fact, there are indeed significant differences between the two, and there is currently a lack of clear explanations to distinguish the two technologies, which is not conducive to the advancement of technology. We hope to serve the entire community by introducing the differences and connections between image-to-image translation and style transfer. The entire discussion process involves the concepts, forms, training modes, evaluation processes, and visualization results of the two technologies. Finally, we conclude that image-to-image translation divides images by domain, and the types of images in the domain are limited, and the scope involved is small, but the conversion ability is strong and can achieve strong semantic changes. Style transfer divides image types by single image, and the scope involved is large, but the transfer ability is limited, and it transfers more texture and color of the image.
Related papers
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - S2ST: Image-to-Image Translation in the Seed Space of Latent Diffusion [23.142097481682306]
We introduce S2ST, a novel framework designed to accomplish global I2IT in complex images.
S2ST operates within the seed space of a Latent Diffusion Model, thereby leveraging the powerful image priors learned by the latter.
We show that S2ST surpasses state-of-the-art GAN-based I2IT methods, as well as diffusion-based approaches, for complex automotive scenes.
arXiv Detail & Related papers (2023-11-30T18:59:49Z) - SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GAN is shown to be effective for learning to generate realistic and diverse scenery images.
For more realistic and diverse image generation we introduce style reference image.
We validate the proposed algorithm for image-to-image translation and stylizing outdoor images.
arXiv Detail & Related papers (2023-11-07T10:29:16Z) - Unsupervised Image-to-Image Translation with Generative Prior [103.54337984566877]
Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data.
We present a novel framework, Generative Prior-guided UN Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm.
arXiv Detail & Related papers (2022-04-07T17:59:23Z) - Multi-domain Unsupervised Image-to-Image Translation with Appearance
Adaptive Convolution [62.4972011636884]
We propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework.
We exploit the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance.
We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-02-06T14:12:34Z) - Unsupervised Image-to-Image Translation via Pre-trained StyleGAN2
Network [73.5062435623908]
We propose a new I2I translation method that generates a new model in the target domain via a series of model transformations.
By feeding the latent vector into the generated model, we can perform I2I translation between the source domain and target domain.
arXiv Detail & Related papers (2020-10-12T13:51:40Z) - Geometric Style Transfer [74.58782301514053]
We introduce a neural architecture that supports transfer of geometric style.
New architecture runs prior to a network that transfers texture style.
Users can input content/style pair as is common, or they can chose to input a content/texture-style/geometry-style triple.
arXiv Detail & Related papers (2020-07-10T16:33:23Z) - Domain Adaptation for Image Dehazing [72.15994735131835]
Most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to domain shift.
We propose a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules.
Experimental results on both synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms.
arXiv Detail & Related papers (2020-05-10T13:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.