Overcoming the Zero-Rate Hashing Bound with Holographic Quantum Error Correction
- URL: http://arxiv.org/abs/2408.06232v1
- Date: Mon, 12 Aug 2024 15:35:03 GMT
- Title: Overcoming the Zero-Rate Hashing Bound with Holographic Quantum Error Correction
- Authors: Junyu Fan, Matthew Steinberg, Alexander Jahn, Charles Cao, Sebastian Feld,
- Abstract summary: We study zero-rate holographic quantum error correction codes, discovering very high threshold values under diverse and finitely-biased noise channels.
This work is also the first instance of such remarkable threshold behavior in stabilizer quantum codes for the pure 2-Pauli noise regime.
- Score: 40.671162828621426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several recent techniques for modifying topological codes with single-qubit Clifford operators have shown high resilience against pure Pauli noise. Paramount to these findings has been the demonstration that several variants exhibit error thresholds often attaining or exceeding the zero-rate hashing bound, a known benchmark for code-capacity noise channels, for biased noise. Additionally, direct comparison with the hashing bound has shown that several topological codes outperform the hashing bound at points of finite Pauli noise biases. Motivated by these observations, we study zero-rate holographic quantum error correction codes, discovering very high threshold values under diverse and finitely-biased noise channels using a tensor-network decoding approach. Our results establish that all codes tested achieve or surpass the hashing bound at various points, ranging from pure 2-Pauli noise ($\eta = 0$) to pure 1-Pauli noise ($\eta = +\infty$), thereby demonstrating that holographic codes exhibit excellent error tolerance in the code-capacity picture. Such findings imply the existence of a structured and systematic method for constructing high-threshold codes suitable for realistically motivated noise channels. To our knowledge, this work is also the first instance of such remarkable threshold behavior in stabilizer quantum codes for the pure 2-Pauli noise regime, as well as for finitely-biased noise channels.
Related papers
- Approximate Quantum Error Correction with 1D Log-Depth Circuits [0.824969449883056]
We construct quantum error-correcting codes based on one-dimensional, logarithmic-depth random Clifford encoding circuits with a two-layer circuit structure.
We show that the error correction inaccuracy decays exponentially with circuit depth, resulting in negligible errors for these logarithmic-depth circuits.
arXiv Detail & Related papers (2025-03-22T12:54:04Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Modeling error correction with Lindblad dynamics and approximate channels [0.0]
We study how different approximations of the noise capture the performance of the five-qubit code.
A Pauli approximation going beyond a single-qubit channel, is sensitive to the details of the noise, state, and decoder.
We calculate the code pseudo-threshold emerging within this model, and demonstrate how knowledge of the qubit parameters and connectivity can be used to design better decoders.
arXiv Detail & Related papers (2024-02-26T16:48:34Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Better-than-classical Grover search via quantum error detection and
suppression [0.0]
Grover's search algorithm is one of the first quantum algorithms to exhibit a provable quantum advantage.
Here, we report better-than-classical success probabilities for a complete Grover search algorithm on the largest scale demonstrated to date.
arXiv Detail & Related papers (2022-11-08T20:31:02Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - The XZZX Surface Code [2.887393074590696]
We show that a variant of the surface code -- the XZZX code -- offers remarkable performance for fault-tolerant quantum computation.
The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel.
We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-09-16T18:00:01Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.