FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data
- URL: http://arxiv.org/abs/2408.06273v3
- Date: Sat, 26 Oct 2024 15:55:33 GMT
- Title: FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data
- Authors: Haoran Sun, Renren Jin, Shaoyang Xu, Leiyu Pan, Supryadi, Menglong Cui, Jiangcun Du, Yikun Lei, Lei Yang, Ling Shi, Juesi Xiao, Shaolin Zhu, Deyi Xiong,
- Abstract summary: We present FuxiTranyu, an open-source multilingual model for large language models (LLMs)
The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data.
Experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu.
- Score: 39.54285525397304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated prowess in a wide range of tasks. However, many LLMs exhibit significant performance discrepancies between high- and low-resource languages. To mitigate this challenge, we present FuxiTranyu, an open-source multilingual LLM, which is designed to satisfy the need of the research community for balanced and high-performing multilingual capabilities. The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data that contains 600 billion tokens covering 43 natural languages and 16 programming languages. We also develop two instruction-tuned models: FuxiTranyu-8B-SFT which is fine-tuned on a diverse multilingual instruction dataset, and FuxiTranyu-8B-DPO which is further refined with DPO on a preference dataset for enhanced alignment ability. Extensive experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu against existing multilingual LLMs, e.g., BLOOM-7B, PolyLM-13B, and Mistral-7B-Instruct. Both neuron and representation interpretability analyses reveal that FuxiTranyu achieves consistent multilingual representations across languages. To promote further research into multilingual LLMs, we release both the base and instruction-tuned FuxiTranyu models together with 58 pre-training checkpoints at HuggingFace (see https://huggingface.co/TJUNLP/FuxiTranyu-8B) and Github (see https://github.com/tjunlp-lab/FuxiTranyu).
Related papers
- Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study [13.409987421121405]
GemmaX2-28 is a 9B model achieving top-tier multilingual translation performance across 28 languages.
GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA.
arXiv Detail & Related papers (2025-02-04T16:57:03Z) - Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
We introduce Multi-IF, a new benchmark designed to assess Large Language Models' proficiency in following multi-turn and multilingual instructions.
Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks.
languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities.
arXiv Detail & Related papers (2024-10-21T00:59:47Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Benchmarking the Performance of Pre-trained LLMs across Urdu NLP Tasks [0.9786690381850356]
This study presents in-depth examination of 7 prominent Large Language Models (LLMs) across 17 tasks using 22 datasets, 13.8 hours of speech, in a zero-shot setting, and their performance against state-of-the-art (SOTA) models.
Our results emphasize that models with fewer parameters but richer language-specific data, like Llama 3.1-8B, often outperform larger models with lower language diversity, such as GPT-3.5, in several tasks.
arXiv Detail & Related papers (2024-05-24T11:30:37Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.