Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach
- URL: http://arxiv.org/abs/2408.06465v1
- Date: Mon, 12 Aug 2024 19:32:28 GMT
- Title: Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach
- Authors: Daniel Lengyel, Panos Parpas, Boumediene Hamzi, Houman Owhadi,
- Abstract summary: This paper examines the application of the Kernel Sum of Squares (KSOS) method for enhancing kernel learning from data.
Traditional kernel-based methods frequently struggle with selecting optimal base kernels and parameter tuning.
KSOS mitigates these issues by leveraging a global optimization framework with kernel-based surrogate functions.
- Score: 0.19999259391104385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the application of the Kernel Sum of Squares (KSOS) method for enhancing kernel learning from data, particularly in the context of dynamical systems. Traditional kernel-based methods, despite their theoretical soundness and numerical efficiency, frequently struggle with selecting optimal base kernels and parameter tuning, especially with gradient-based methods prone to local optima. KSOS mitigates these issues by leveraging a global optimization framework with kernel-based surrogate functions, thereby achieving more reliable and precise learning of dynamical systems. Through comprehensive numerical experiments on the Logistic Map, Henon Map, and Lorentz System, KSOS is shown to consistently outperform gradient descent in minimizing the relative-$\rho$ metric and improving kernel accuracy. These results highlight KSOS's effectiveness in predicting the behavior of chaotic dynamical systems, demonstrating its capability to adapt kernels to underlying dynamics and enhance the robustness and predictive power of kernel-based approaches, making it a valuable asset for time series analysis in various scientific fields.
Related papers
- Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
Current on-device training methods just focus on efficient training without considering the catastrophic forgetting.
This paper proposes a simple but effective edge-friendly incremental learning framework.
Our method achieves average accuracy boost of 38.08% with even less memory and approximate computation.
arXiv Detail & Related papers (2024-06-13T05:49:29Z) - Enhancing Kernel Flexibility via Learning Asymmetric Locally-Adaptive
Kernels [35.76925787221499]
This paper introduces the concept of Locally-Adaptive-Bandwidths (LAB) as trainable parameters to enhance the Radial Basis Function (RBF) kernel.
The parameters in LAB RBF kernels are data-dependent, and its number can increase with the dataset.
This paper for the first time establishes an asymmetric kernel ridge regression framework and introduces an iterative kernel learning algorithm.
arXiv Detail & Related papers (2023-10-08T17:08:15Z) - Guided Deep Kernel Learning [42.53025115287688]
We present a novel approach for learning deep kernels by utilizing infinite-width neural networks.
Our approach harnesses the reliable uncertainty estimation of the NNGPs to adapt the DKL target confidence when it encounters novel data points.
arXiv Detail & Related papers (2023-02-19T13:37:34Z) - RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features [3.0079490585515347]
We introduce RFFNet, a scalable method that learns the kernel relevances' on the fly via first-order optimization.
We show that our approach has a small memory footprint and run-time, low prediction error, and effectively identifies relevant features.
We supply users with an efficient, PyTorch-based library, that adheres to the scikit-learn standard API and code for fully reproducing our results.
arXiv Detail & Related papers (2022-11-11T18:50:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - Learning dynamical systems from data: A simple cross-validation perspective, part III: Irregularly-Sampled Time Series [8.918419734720613]
A simple and interpretable way to learn a dynamical system from data is to interpolate its vector-field with a kernel.
Despite its previous successes, this strategy breaks down when the observed time series is not regularly sampled in time.
We propose to address this problem by directly approxing the vector field of the dynamical system by incorporating time differences in the (KF) data-adapted kernels.
arXiv Detail & Related papers (2021-11-25T11:45:40Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
Kernel estimation is generally one of the key problems for blind image super-resolution (SR)
This paper proposes a normalizing flow-based kernel prior (FKP) for kernel modeling.
Experiments on synthetic and real-world images demonstrate that the proposed FKP can significantly improve the kernel estimation accuracy.
arXiv Detail & Related papers (2021-03-29T22:37:06Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
We show that the averaged gradient descent can achieve the minimax optimal convergence rate.
We show that the target function specified by the NTK of a ReLU network can be learned at the optimal convergence rate.
arXiv Detail & Related papers (2020-06-22T14:31:37Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
Physics Informed Deep Kernel Learning (PI-DKL) exploits physics knowledge represented by differential equations with latent sources.
For efficient and effective inference, we marginalize out the latent variables and derive a collapsed model evidence lower bound (ELBO)
arXiv Detail & Related papers (2020-06-08T22:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.