Generalization Enhancement Strategies to Enable Cross-year Cropland Mapping with Convolutional Neural Networks Trained Using Historical Samples
- URL: http://arxiv.org/abs/2408.06467v2
- Date: Wed, 14 Aug 2024 21:53:32 GMT
- Title: Generalization Enhancement Strategies to Enable Cross-year Cropland Mapping with Convolutional Neural Networks Trained Using Historical Samples
- Authors: Sam Khallaghi, Rahebe Abedi, Hanan Abou Ali, Mary Dziedzorm Asipunu, Ismail Alatise, Nguyen Ha, Boka Luo, Cat Mai, Lei Song, Amos Wussah, Sitian Xiong, Qi Zhang, Lyndon D. Estes,
- Abstract summary: The accuracy of mapping agricultural fields across large areas is steadily improving with high-resolution satellite imagery and deep learning (DL) models.
However, developing effective DL models often requires large, expensive label datasets, typically available only for specific years or locations.
This limits the ability to create annual maps essential for agricultural monitoring, as domain shifts occur between years and regions due to changes in farming practices and environmental conditions.
- Score: 5.703107376077042
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The accuracy of mapping agricultural fields across large areas is steadily improving with high-resolution satellite imagery and deep learning (DL) models, even in regions where fields are small and geometrically irregular. However, developing effective DL models often requires large, expensive label datasets, typically available only for specific years or locations. This limits the ability to create annual maps essential for agricultural monitoring, as domain shifts occur between years and regions due to changes in farming practices and environmental conditions. The challenge is to design a model flexible enough to account for these shifts without needing yearly labels. While domain adaptation techniques or semi-supervised training are common solutions, we explored enhancing the model's generalization power. Our results indicate that a holistic approach is essential, combining methods to improve generalization. Specifically, using an area-based loss function, such as Tversky-focal loss (TFL), significantly improved predictions across multiple years. The use of different augmentation techniques helped to encode different types of invariance, particularly photometric augmentations encoded invariance to brightness changes, though they increased false positives. The combination of photometric augmentation, TFL loss, and MC-dropout produced the best results, although dropout alone led to more false negatives in subsequent year predictions. Additionally, the choice of input normalization had a significant impact, with the best results obtained when statistics were calculated either locally or across the entire dataset over all bands (lab and gab). We developed a workflow that enabled a U-Net model to generate effective multi-year crop maps over large areas. Our code, available at: https://github.com/agroimpacts/cnn-generalization-enhancement, will be regularly updated with improvements.
Related papers
- Learning from Limited and Imperfect Data [6.30667368422346]
We develop practical algorithms for Deep Neural Networks that can learn from limited and imperfect data present in the real world.
These works are divided into four segments, each covering a scenario of learning from limited or imperfect data.
arXiv Detail & Related papers (2024-11-11T18:48:31Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
This paper introduces the Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)
CropSTGAN learns to transform the target domain's spectral features to those of the source domain, effectively bridging large dissimilarities.
In experiments, CropSTGAN is benchmarked against various state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-01-15T00:27:41Z) - CNN Feature Map Augmentation for Single-Source Domain Generalization [6.053629733936548]
Domain Generalization (DG) has gained significant traction during the past few years.
The goal in DG is to produce models which continue to perform well when presented with data distributions different from the ones available during training.
We propose an alternative regularization technique for convolutional neural network architectures in the single-source DG image classification setting.
arXiv Detail & Related papers (2023-05-26T08:48:17Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or unseen target domains.
We propose HRDA, a multi-resolution framework for UDA&DG, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention.
arXiv Detail & Related papers (2023-04-26T15:18:45Z) - Comparison of machine learning algorithms for merging gridded satellite
and earth-observed precipitation data [7.434517639563671]
We use monthly earth-observed precipitation data from the Global Historical Climatology Network monthly database, version 2.
Results suggest that extreme gradient boosting and random forests are the most accurate in terms of the squared error scoring function.
arXiv Detail & Related papers (2022-12-17T09:39:39Z) - When Neural Networks Fail to Generalize? A Model Sensitivity Perspective [82.36758565781153]
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions.
This paper considers a more realistic yet more challenging scenario, namely Single Domain Generalization (Single-DG)
We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity"
We propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies.
arXiv Detail & Related papers (2022-12-01T20:15:15Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
Domain classification is the fundamental task in natural language understanding (NLU)
Most existing continual learning approaches suffer from low accuracy and performance fluctuation.
We propose a hyper parameter-free continual learning model for text data that can stably produce high performance under various environments.
arXiv Detail & Related papers (2022-01-05T02:46:16Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - A Batch Normalization Classifier for Domain Adaptation [0.0]
Adapting a model to perform well on unforeseen data outside its training set is a common problem that continues to motivate new approaches.
We demonstrate that application of batch normalization in the output layer, prior to softmax activation, results in improved generalization across visual data domains in a refined ResNet model.
arXiv Detail & Related papers (2021-03-22T08:03:44Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.