DePatch: Towards Robust Adversarial Patch for Evading Person Detectors in the Real World
- URL: http://arxiv.org/abs/2408.06625v1
- Date: Tue, 13 Aug 2024 04:25:13 GMT
- Title: DePatch: Towards Robust Adversarial Patch for Evading Person Detectors in the Real World
- Authors: Jikang Cheng, Ying Zhang, Zhongyuan Wang, Zou Qin, Chen Li,
- Abstract summary: We introduce the Decoupled adversarial Patch (DePatch) attack to address the self-coupling issue of adversarial patches.
Specifically, we divide the adversarial patch into block-wise segments, and reduce the inter-dependency among these segments.
We further introduce a border shifting operation and a progressive decoupling strategy to improve the overall attack capabilities.
- Score: 13.030804897732185
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent years have seen an increasing interest in physical adversarial attacks, which aim to craft deployable patterns for deceiving deep neural networks, especially for person detectors. However, the adversarial patterns of existing patch-based attacks heavily suffer from the self-coupling issue, where a degradation, caused by physical transformations, in any small patch segment can result in a complete adversarial dysfunction, leading to poor robustness in the complex real world. Upon this observation, we introduce the Decoupled adversarial Patch (DePatch) attack to address the self-coupling issue of adversarial patches. Specifically, we divide the adversarial patch into block-wise segments, and reduce the inter-dependency among these segments through randomly erasing out some segments during the optimization. We further introduce a border shifting operation and a progressive decoupling strategy to improve the overall attack capabilities. Extensive experiments demonstrate the superior performance of our method over other physical adversarial attacks, especially in the real world.
Related papers
- Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
We observe that the attention mechanism is vulnerable to patch-based adversarial attacks.
In this paper, we propose a Robust Attention Mechanism (RAM) to improve the robustness of the semantic segmentation model.
arXiv Detail & Related papers (2024-01-03T13:58:35Z) - AdvART: Adversarial Art for Camouflaged Object Detection Attacks [7.7889972735711925]
We propose a novel approach to generate naturalistic and inconspicuous adversarial patches.
Our technique is based on directly manipulating the pixel values in the patch, which gives higher flexibility and larger space.
Our attack achieves superior success rate of up to 91.19% and 72%, respectively, in the digital world and when deployed in smart cameras at the edge.
arXiv Detail & Related papers (2023-03-03T06:28:05Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Segment and Complete: Defending Object Detectors against Adversarial
Patch Attacks with Robust Patch Detection [142.24869736769432]
Adversarial patch attacks pose a serious threat to state-of-the-art object detectors.
We propose Segment and Complete defense (SAC), a framework for defending object detectors against patch attacks.
We show SAC can significantly reduce the targeted attack success rate of physical patch attacks.
arXiv Detail & Related papers (2021-12-08T19:18:48Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z) - Demotivate adversarial defense in remote sensing [0.0]
We study adversarial retraining and adversarial regularization as adversarial defenses to this purpose.
We show through several experiments on public remote sensing datasets that adversarial robustness seems uncorrelated to geographic and over-fitting robustness.
arXiv Detail & Related papers (2021-05-28T15:04:37Z) - Generating Adversarial yet Inconspicuous Patches with a Single Image [15.217367754000913]
We propose an approach to gen-erate adversarial yet inconspicuous patches with onesingle image.
In our approach, adversarial patches areproduced in a coarse-to-fine way with multiple scalesof generators and discriminators.
Our ap-proach shows strong attacking ability in both the white-box and black-box setting.
arXiv Detail & Related papers (2020-09-21T11:56:01Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z) - Adversarial Training against Location-Optimized Adversarial Patches [84.96938953835249]
adversarial patches: clearly visible, but adversarially crafted rectangular patches in images.
We first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image.
We apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB.
arXiv Detail & Related papers (2020-05-05T16:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.