Unified-IoU: For High-Quality Object Detection
- URL: http://arxiv.org/abs/2408.06636v1
- Date: Tue, 13 Aug 2024 04:56:45 GMT
- Title: Unified-IoU: For High-Quality Object Detection
- Authors: Xiangjie Luo, Zhihao Cai, Bo Shao, Yingxun Wang,
- Abstract summary: We propose a new IoU loss function, called Unified-IoU (UIoU), which is more concerned with the weight assignment between different quality prediction boxes.
Our proposed method achieves better performance on multiple datasets, especially at a high IoU threshold.
- Score: 1.62877896907106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is an important part in the field of computer vision, and the effect of object detection is directly determined by the regression accuracy of the prediction box. As the key to model training, IoU (Intersection over Union) greatly shows the difference between the current prediction box and the Ground Truth box. Subsequent researchers have continuously added more considerations to IoU, such as center distance, aspect ratio, and so on. However, there is an upper limit to just refining the geometric differences; And there is a potential connection between the new consideration index and the IoU itself, and the direct addition or subtraction between the two may lead to the problem of "over-consideration". Based on this, we propose a new IoU loss function, called Unified-IoU (UIoU), which is more concerned with the weight assignment between different quality prediction boxes. Specifically, the loss function dynamically shifts the model's attention from low-quality prediction boxes to high-quality prediction boxes in a novel way to enhance the model's detection performance on high-precision or intensive datasets and achieve a balance in training speed. Our proposed method achieves better performance on multiple datasets, especially at a high IoU threshold, UIoU has a more significant improvement effect compared with other improved IoU losses. Our code is publicly available at: https://github.com/lxj-drifter/UIOU_files.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
Inadequate bounding box modeling in regression tasks constrains the performance of one-stage 3D object detection.
We propose Decoupled and Interactive Regression Modeling (DIRM) for one-stage detection.
arXiv Detail & Related papers (2024-09-01T10:47:22Z) - Directly Optimizing IoU for Bounding Box Localization [5.018156030818881]
This paper presents a novel method to maximize the detection of bounding boxes for the bounding boxes.
The Smooth IoU method has shown performance gains over the standard Huber loss.
It has been evaluated on the Oxford IIIT, Udacity self-driving car, PA Pets Union, and VWFS Car Damage datasets.
arXiv Detail & Related papers (2023-04-14T17:08:12Z) - Rethinking IoU-based Optimization for Single-stage 3D Object Detection [103.83141677242871]
We propose a Rotation-Decoupled IoU (RDIoU) method that can mitigate the rotation-sensitivity issue.
Our RDIoU simplifies the complex interactions of regression parameters by decoupling the rotation variable as an independent term.
arXiv Detail & Related papers (2022-07-19T15:35:23Z) - Decoupled IoU Regression for Object Detection [31.9114940121939]
Non-maximum suppression (NMS) is widely used in object detection pipelines for removing duplicated bounding boxes.
Inconsistency between the confidence for NMS and the real localization confidence seriously affects detection performance.
We propose a novel Decoupled IoU Regression model to handle these problems.
arXiv Detail & Related papers (2022-02-02T04:01:11Z) - Distribution-aware Margin Calibration for Semantic Segmentation in
Images [78.65312390695038]
Jaccard index, also known as Intersection-over-Union (IoU), is one of the most critical evaluation metrics in image semantic segmentation.
Direct optimization of IoU score is very difficult because the learning objective is neither differentiable nor decomposable.
We propose a margin calibration method, which can be directly used as a learning objective, for an improved generalization of IoU over the data-distribution.
arXiv Detail & Related papers (2021-12-21T22:38:25Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds [68.44740333471792]
We add a 3D IoU prediction branch to the regular classification and regression branches.
We propose a 3D IoU-Net with IoU sensitive feature learning and an IoU alignment operation.
The experimental results on the KITTI car detection benchmark show that 3D IoU-Net with IoU perception achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-04-10T09:24:29Z) - Seeing without Looking: Contextual Rescoring of Object Detections for AP
Maximization [4.346179456029563]
We propose to incorporate context in object detection by post-processing the output of an arbitrary detector.
Rescoring is done by conditioning on contextual information from the entire set of detections.
We show that AP can be improved by simply reassigning the detection confidence values.
arXiv Detail & Related papers (2019-12-27T18:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.