A bound on the quantum value of all compiled nonlocal games
- URL: http://arxiv.org/abs/2408.06711v2
- Date: Tue, 15 Oct 2024 08:36:28 GMT
- Title: A bound on the quantum value of all compiled nonlocal games
- Authors: Alexander Kulpe, Giulio Malavolta, Connor Paddock, Simon Schmidt, Michael Walter,
- Abstract summary: A cryptographic compiler converts any nonlocal game into an interactive protocol with a single computationally bounded prover.
We establish a quantum soundness result for all compiled two-player nonlocal games.
- Score: 49.32403970784162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A cryptographic compiler introduced by Kalai et al. (STOC'23) converts any nonlocal game into an interactive protocol with a single computationally bounded prover. Although the compiler is known to be sound in the case of classical provers and complete in the quantum case, quantum soundness has so far only been established for special classes of games. In this work, we establish a quantum soundness result for all compiled two-player nonlocal games. In particular, we prove that the quantum commuting operator value of the underlying nonlocal game is an upper bound on the quantum value of the compiled game. Our result employs techniques from operator algebras in a computational and cryptographic setting to establish information-theoretic objects in the asymptotic limit of the security parameter. It further relies on a sequential characterization of quantum commuting operator correlations which may be of independent interest.
Related papers
- Transfer of quantum game strategies [0.0]
We show a new class of QNS correlations needed for the transfer of strategies between games.
We define jointly tracial correlations and show they correspond to traces acting on tensor products of canonical $rm C*$-algebras associated with individual game parties.
arXiv Detail & Related papers (2024-10-12T17:25:58Z) - A Computational Tsirelson's Theorem for the Value of Compiled XOR Games [9.818381970014284]
We show that the compiler proposed by Kalai et al. is sound for any two-player XOR game.
Using our techniques, we obtain several additional results, including tight bounds on the compiled value of parallel-repeated XOR games.
arXiv Detail & Related papers (2024-02-27T08:24:21Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Advantage from Any Non-Local Game [14.903809621145893]
We show a general method of compiling any $k$-prover non-local game into a single-prover interactive game.
Our compiler uses any quantum homomorphic encryption scheme.
arXiv Detail & Related papers (2022-03-29T19:45:44Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Synchronicity for quantum non-local games [0.7646713951724009]
We show that quantum homomorphisms of quantum graphs can be viewed as entanglement assisted classical homomorphisms of the graphs.
We give descriptions of the perfect quantum commuting and the perfect approximately quantum strategies for the quantum graph homomorphism game.
arXiv Detail & Related papers (2021-06-22T02:40:41Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.