Improving Quantum Developer Experience with Kubernetes and Jupyter Notebooks
- URL: http://arxiv.org/abs/2408.06756v1
- Date: Tue, 13 Aug 2024 09:27:35 GMT
- Title: Improving Quantum Developer Experience with Kubernetes and Jupyter Notebooks
- Authors: Otso Kinanen, Andrés D. Muñoz-Moller, Vlad Stirbu, Tommi Mikkonen,
- Abstract summary: We investigate the potential of using an accessible and cost-efficient manner remote computational capabilities to improve the experience of quantum software developers.
New capabilities need software solutions that are able to effectively harness its power.
- Score: 2.2649161260425723
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains. To realize this promise, new capabilities need software solutions that are able to effectively harness its power. However, developers face significant challenges when developing quantum software due to the high computational demands of simulating quantum computers on classical systems. In this paper, we investigate the potential of using an accessible and cost-efficient manner remote computational capabilities to improve the experience of quantum software developers.
Related papers
- Quantum algorithms for scientific computing [0.0]
Areas that are likely to have the greatest impact on high performance computing include simulation of quantum systems, optimization, and machine learning.
Even a modest quantum enhancement to current classical techniques would have far-reaching impacts in areas such as weather forecasting, aerospace engineering, and the design of "green" materials for sustainable development.
arXiv Detail & Related papers (2023-12-22T18:29:31Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Software Architecture Challenges in Integrating Hybrid Classical-Quantum
Systems [3.2851683371946767]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations exponentially imply better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-08-02T08:20:34Z) - Full-Stack Quantum Software in Practice: Ecosystem, Stakeholders and
Challenges [5.242305867893238]
The emergence of quantum computing has introduced a revolutionary paradigm capable of transforming numerous scientific and industrial sectors.
However, realizing the practical utilization of quantum software in real-world applications presents significant challenges.
This paper explores tangible approaches to establishing quantum computing software development process.
arXiv Detail & Related papers (2023-07-30T23:44:22Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.