Divide and Conquer: Improving Multi-Camera 3D Perception with 2D Semantic-Depth Priors and Input-Dependent Queries
- URL: http://arxiv.org/abs/2408.06901v1
- Date: Tue, 13 Aug 2024 13:51:34 GMT
- Title: Divide and Conquer: Improving Multi-Camera 3D Perception with 2D Semantic-Depth Priors and Input-Dependent Queries
- Authors: Qi Song, Qingyong Hu, Chi Zhang, Yongquan Chen, Rui Huang,
- Abstract summary: Existing techniques often neglect the synergistic effects of semantic and depth cues, leading to classification and position estimation errors.
We propose an input-aware Transformer framework that leverages Semantics and Depth as priors.
Our approach involves the use of an S-D that explicitly models semantic and depth priors, thereby disentangling the learning process of object categorization and position estimation.
- Score: 30.17281824826716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D perception tasks, such as 3D object detection and Bird's-Eye-View (BEV) segmentation using multi-camera images, have drawn significant attention recently. Despite the fact that accurately estimating both semantic and 3D scene layouts are crucial for this task, existing techniques often neglect the synergistic effects of semantic and depth cues, leading to the occurrence of classification and position estimation errors. Additionally, the input-independent nature of initial queries also limits the learning capacity of Transformer-based models. To tackle these challenges, we propose an input-aware Transformer framework that leverages Semantics and Depth as priors (named SDTR). Our approach involves the use of an S-D Encoder that explicitly models semantic and depth priors, thereby disentangling the learning process of object categorization and position estimation. Moreover, we introduce a Prior-guided Query Builder that incorporates the semantic prior into the initial queries of the Transformer, resulting in more effective input-aware queries. Extensive experiments on the nuScenes and Lyft benchmarks demonstrate the state-of-the-art performance of our method in both 3D object detection and BEV segmentation tasks.
Related papers
- EVT: Efficient View Transformation for Multi-Modal 3D Object Detection [2.9848894641223302]
We propose a novel 3D object detector via efficient view transformation (EVT)
EVT uses Adaptive Sampling and Adaptive Projection (ASAP) to generate 3D sampling points and adaptive kernels.
It is designed to effectively utilize the obtained multi-modal BEV features within the transformer decoder.
arXiv Detail & Related papers (2024-11-16T06:11:10Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
This paper focuses on leveraging geometry information, such as depth, to model such feature transformation.
We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view.
We then aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame.
arXiv Detail & Related papers (2023-07-09T06:07:22Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
Multi-view 3D object detection is becoming popular in autonomous driving due to its high effectiveness and low cost.
Most of the current state-of-the-art detectors follow the query-based bird's-eye-view (BEV) paradigm.
We propose an Object-Centric query-BEV detector OCBEV, which can carve the temporal and spatial cues of moving targets more effectively.
arXiv Detail & Related papers (2023-06-02T17:59:48Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Monocular 3D Object Detection with Sequential Feature Association and
Depth Hint Augmentation [12.55603878441083]
FADNet is presented to address the task of monocular 3D object detection.
A dedicated depth hint module is designed to generate row-wise features named as depth hints.
The contributions of this work are validated by conducting experiments and ablation study on the KITTI benchmark.
arXiv Detail & Related papers (2020-11-30T07:19:14Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.