Stabilizer bootstrapping: A recipe for efficient agnostic tomography and magic estimation
- URL: http://arxiv.org/abs/2408.06967v2
- Date: Fri, 15 Nov 2024 03:20:45 GMT
- Title: Stabilizer bootstrapping: A recipe for efficient agnostic tomography and magic estimation
- Authors: Sitan Chen, Weiyuan Gong, Qi Ye, Zhihan Zhang,
- Abstract summary: We study the task of tomography: given copies of an unknown $n$-qubit state $rho$ which has fidelity $tau$ with some state in a given class $C$, find a state which has fidelity $ge tau - epsilon$ with $rho$.
We give a new framework, stabilizer bootstrapping, for designing computationally efficient protocols for this task, and use this to get new agnostic tomography protocols for the following classes: stabilizer states and discrete product states.
- Score: 16.499689832762765
- License:
- Abstract: We study the task of agnostic tomography: given copies of an unknown $n$-qubit state $\rho$ which has fidelity $\tau$ with some state in a given class $C$, find a state which has fidelity $\ge \tau - \epsilon$ with $\rho$. We give a new framework, stabilizer bootstrapping, for designing computationally efficient protocols for this task, and use this to get new agnostic tomography protocols for the following classes: Stabilizer states: We give a protocol that runs in time $\mathrm{poly}(n,1/\epsilon)\cdot (1/\tau)^{O(\log(1/\tau))}$, answering an open question posed by Grewal, Iyer, Kretschmer, Liang [43] and Anshu and Arunachalam [6]. Previous protocols ran in time $\mathrm{exp}(\Theta(n))$ or required $\tau>\cos^2(\pi/8)$. States with stabilizer dimension $n - t$: We give a protocol that runs in time $n^3\cdot(2^t/\tau)^{O(\log(1/\epsilon))}$, extending recent work on learning quantum states prepared by circuits with few non-Clifford gates, which only applied in the realizable setting where $\tau = 1$ [33, 40, 49, 66]. Discrete product states: If $C = K^{\otimes n}$ for some $\mu$-separated discrete set $K$ of single-qubit states, we give a protocol that runs in time $(n/\mu)^{O((1 + \log (1/\tau))/\mu)}/\epsilon^2$. This strictly generalizes a prior guarantee which applied to stabilizer product states [42]. For stabilizer product states, we give a further improved protocol that runs in time $(n^2/\epsilon^2)\cdot (1/\tau)^{O(\log(1/\tau))}$. As a corollary, we give the first protocol for estimating stabilizer fidelity, a standard measure of magic for quantum states, to error $\epsilon$ in $n^3 \mathrm{quasipoly}(1/\epsilon)$ time.
Related papers
- A shortcut to an optimal quantum linear system solver [55.2480439325792]
We give a conceptually simple quantum linear system solvers (QLSS) that does not use complex or difficult-to-analyze techniques.
If the solution norm $lVertboldsymbolxrVert$ is known exactly, our QLSS requires only a single application of kernel.
Alternatively, by reintroducing a concept from the adiabatic path-following technique, we show that $O(kappa)$ complexity can be achieved for norm estimation.
arXiv Detail & Related papers (2024-06-17T20:54:11Z) - Agnostic Tomography of Stabilizer Product States [0.43123403062068827]
We give an efficient agnostic tomography algorithm for the class $mathcalC$ of $n$-qubit stabilizer product states.
We output a succinct description of a state that approximates at least as well as any state in $mathcalC$.
arXiv Detail & Related papers (2024-04-04T21:39:47Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom [1.0323063834827415]
We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random.
We prove that $omega(log(n))$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states.
arXiv Detail & Related papers (2022-09-29T03:34:03Z) - Tight Bounds for the Randomized and Quantum Communication Complexities
of Equality with Small Error [1.6522364074260811]
We investigate the randomized and quantum communication complexities of the Equality function with small error probability $epsilon$.
We show that any $log(n/epsilon)-loglog(sqrtn/epsilon)+3$ protocol communicates at least $log(n/epsilon)-log(sqrtn/epsilon)-O(1)$ qubits.
arXiv Detail & Related papers (2021-07-25T13:52:42Z) - Lower Bounds on Stabilizer Rank [3.265773263570237]
We prove that for a sufficiently small constant $delta, the stabilizer rank of any state which is $$-close to those states is $Omega(sqrtn/log n)$.
This is the first non-trivial lower bound for approximate stabilizer rank.
arXiv Detail & Related papers (2021-06-06T19:27:51Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.