A Unified Manifold Similarity Measure Enhancing Few-Shot, Transfer, and Reinforcement Learning in Manifold-Distributed Datasets
- URL: http://arxiv.org/abs/2408.07095v1
- Date: Mon, 12 Aug 2024 01:25:00 GMT
- Title: A Unified Manifold Similarity Measure Enhancing Few-Shot, Transfer, and Reinforcement Learning in Manifold-Distributed Datasets
- Authors: Sayed W Qayyumi, Laureance F Park, Oliver Obst,
- Abstract summary: We present a novel method for determining the similarity between two manifold structures.
This method can be used to determine whether the target and source datasets have a similar manifold structure suitable for transfer learning.
We then present a few-shot learning method to classify manifold-distributed datasets with limited labels.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a classifier with high mean accuracy from a manifold-distributed dataset can be challenging. This problem is compounded further when there are only few labels available for training. For transfer learning to work, both the source and target datasets must have a similar manifold structure. As part of this study, we present a novel method for determining the similarity between two manifold structures. This method can be used to determine whether the target and source datasets have a similar manifold structure suitable for transfer learning. We then present a few-shot learning method to classify manifold-distributed datasets with limited labels using transfer learning. Based on the base and target datasets, a similarity comparison is made to determine if the two datasets are suitable for transfer learning. A manifold structure and label distribution are learned from the base and target datasets. When the structures are similar, the manifold structure and its relevant label information from the richly labeled source dataset is transferred to target dataset. We use the transferred information, together with the labels and unlabeled data from the target dataset, to develop a few-shot classifier that produces high mean classification accuracy on manifold-distributed datasets. In the final part of this article, we discuss the application of our manifold structure similarity measure to reinforcement learning and image recognition.
Related papers
- Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot
Classification [49.36348058247138]
We tackle the problem of cross-domain few-shot classification by making a small proportion of unlabeled images in the target domain accessible in the training stage.
We meticulously design a cross-level knowledge distillation method, which can strengthen the ability of the model to extract more discriminative features in the target dataset.
Our approach can surpass the previous state-of-the-art method, Dynamic-Distillation, by 5.44% on 1-shot and 1.37% on 5-shot classification tasks.
arXiv Detail & Related papers (2023-11-04T12:28:04Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - A Bag-of-Prototypes Representation for Dataset-Level Applications [24.629132557336312]
This work investigates dataset vectorization for two dataset-level tasks: assessing training set suitability and test set difficulty.
We propose a bag-of-prototypes (BoP) dataset representation that extends the image-level bag consisting of patch descriptors to dataset-level bag consisting of semantic prototypes.
BoP consistently shows its advantage over existing representations on a series of benchmarks for two dataset-level tasks.
arXiv Detail & Related papers (2023-03-23T13:33:58Z) - Combining datasets to increase the number of samples and improve model
fitting [7.4771091238795595]
We propose a novel framework called Combine datasets based on Imputation (ComImp)
In addition, we propose a variant of ComImp that uses Principle Component Analysis (PCA), PCA-ComImp in order to reduce dimension before combining datasets.
Our results indicate that the proposed methods are somewhat similar to transfer learning in that the merge can significantly improve the accuracy of a prediction model on smaller datasets.
arXiv Detail & Related papers (2022-10-11T06:06:37Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
A new design (named Detection Hub) is dataset-aware and category-aligned.
It mitigates the dataset inconsistency and provides coherent guidance for the detector to learn across multiple datasets.
The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding.
arXiv Detail & Related papers (2022-06-07T17:59:44Z) - Deep Transfer Learning for Multi-source Entity Linkage via Domain
Adaptation [63.24594955429465]
Multi-source entity linkage is critical in high-impact applications such as data cleaning and user stitching.
AdaMEL is a deep transfer learning framework that learns generic high-level knowledge to perform multi-source entity linkage.
Our framework achieves state-of-the-art results with 8.21% improvement on average over methods based on supervised learning.
arXiv Detail & Related papers (2021-10-27T15:20:41Z) - Dataset Bias in Few-shot Image Recognition [57.25445414402398]
We first investigate the impact of transferable capabilities learned from base categories.
Second, we investigate performance differences on different datasets from dataset structures and different few-shot learning methods.
arXiv Detail & Related papers (2020-08-18T14:46:23Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
We present a novel Adversarial Knowledge Transfer framework for transferring knowledge from internet-scale unlabeled data to improve the performance of a classifier.
An important novel aspect of our method is that the unlabeled source data can be of different classes from those of the labeled target data, and there is no need to define a separate pretext task.
arXiv Detail & Related papers (2020-08-13T08:04:27Z) - Geometric Dataset Distances via Optimal Transport [15.153110906331733]
We propose an alternative notion of distance between datasets that (i) is model-agnostic, (ii) does not involve training, (iii) can compare datasets even if their label sets are completely disjoint and (iv) has solid theoretical footing.
This distance relies on optimal transport, which provides it with rich geometry awareness, interpretable correspondences and well-understood properties.
Our results show that this novel distance provides meaningful comparison of datasets, and correlates well with transfer learning hardness across various experimental settings and datasets.
arXiv Detail & Related papers (2020-02-07T17:51:26Z) - Heterogeneous Transfer Learning in Ensemble Clustering [0.0]
We consider a clustering problem in which "similar" labeled data are available.
The method is based on constructing meta-features which describe structural characteristics of data.
An experimental study of the method using Monte Carlo modeling has confirmed its efficiency.
arXiv Detail & Related papers (2020-01-20T16:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.