A Process for Reviewing Design Science Research Papers to Enhance Content Knowledge & Research Opportunities
- URL: http://arxiv.org/abs/2408.07230v1
- Date: Wed, 24 Jul 2024 17:40:00 GMT
- Title: A Process for Reviewing Design Science Research Papers to Enhance Content Knowledge & Research Opportunities
- Authors: Kweku-Muata Osei-Bryson,
- Abstract summary: Most published Information Systems research are of the behavioral science research (BSR) category rather than the design science research (DSR) category.
This is due in part to the BSR orientation of many IS doctoral programs, which often do not involve much technical courses.
We present a process for reviewing DSR papers that has as its objectives: enhancing technical content knowledge, increasing knowledge and understanding of approaches to designing and evaluating IS/IT artifacts, and facilitating the identification of new DSR opportunities.
- Score: 4.73194777046253
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Most published Information Systems research are of the behavioral science research (BSR) category rather than the design science research (DSR) category. This is due in part to the BSR orientation of many IS doctoral programs, which often do not involve much technical courses. This includes IS doctoral programs that train Information and Communication Technologies for Development (ICT4D) researchers. Without such technical knowledge many doctoral and postdoctoral researchers will not feel confident in engaging in DSR research. Given the importance of designing artifacts that are appropriate for a given context, an important question is how can ICT4D and other IS researchers increase their IS technical content knowledge and intimacy with the DSR process. In this paper we present, a process for reviewing DSR papers that has as its objectives: enhancing technical content knowledge, increasing knowledge and understanding of approaches to designing and evaluating IS/IT artifacts, and facilitating the identification of new DSR opportunities. This process has been applied for more than a decade at a USA research university.
Related papers
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - Teaching Design Science as a Method for Effective Research Development [0.24578723416255752]
Applying Design Science Research (DSR) methodology is becoming a popular working resource for Information Systems (IS) and Software engineering studies.
This chapter includes examples of DSR, a teaching methodology, learning objectives, and recommendations.
We have created a survey artifact intended to gather data on the experiences of design science users.
arXiv Detail & Related papers (2024-07-13T10:43:06Z) - Teaching Research Design in Software Engineering [1.9659095632676098]
Empirical Software Engineering (ESE) has emerged as a contending force aiming to critically evaluate and provide knowledge that informs practice in adopting new technologies.
This chapter teaches foundational skills in research design, essential for educating software engineers and researchers in ESE.
arXiv Detail & Related papers (2024-07-06T21:06:13Z) - Research information in the light of artificial intelligence: quality and data ecologies [0.0]
This paper presents multi- and interdisciplinary approaches for finding the appropriate AI technologies for research information.
Professional research information management (RIM) is becoming increasingly important as an expressly data-driven tool for researchers.
arXiv Detail & Related papers (2024-05-06T16:07:56Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
We present a survey of AI techniques proposed in the last 15 years to help researchers conduct systematic analyses of scientific literature.
We describe the tasks currently supported, the types of algorithms applied, and available tools proposed in 34 primary studies.
arXiv Detail & Related papers (2024-01-13T19:12:49Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
Knowledge Tracing is one of the fundamental tasks for student behavioral data analysis.
We present three types of fundamental KT models with distinct technical routes.
We discuss potential directions for future research in this rapidly growing field.
arXiv Detail & Related papers (2021-05-06T13:05:55Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL)
This paper presents a systematic literature review of research at the intersection of SE & DL.
We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques to a given problem domain.
arXiv Detail & Related papers (2020-09-14T15:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.