All-around Neural Collapse for Imbalanced Classification
- URL: http://arxiv.org/abs/2408.07253v1
- Date: Wed, 14 Aug 2024 02:06:24 GMT
- Title: All-around Neural Collapse for Imbalanced Classification
- Authors: Enhao Zhang, Chaohua Li, Chuanxing Geng, Songcan Chen,
- Abstract summary: textbfAll-around textbfNeural textbfCollapse framework (AllNC) aims to comprehensively restore Neural Collapse across multiple aspects including individual activations, class means and classifier vectors.
We thoroughly analyze its effectiveness and verify on multiple benchmark datasets that it achieves state-of-the-art in both balanced and imbalanced settings.
- Score: 27.467732819969935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach \textit{optimal} inter-class separability during the terminal phase of training on a \textit{balanced} dataset. Once shifted to imbalanced classification, such an optimal structure of NC can be readily destroyed by the notorious \textit{minority collapse}, where the classifier vectors corresponding to the minority classes are squeezed. In response, existing works endeavor to recover NC typically by optimizing classifiers. However, we discover that this squeezing phenomenon is not only confined to classifier vectors but also occurs with class means. Consequently, reconstructing NC solely at the classifier aspect may be futile, as the feature means remain compressed, leading to the violation of inherent \textit{self-duality} in NC (\textit{i.e.}, class means and classifier vectors converge mutually) and incidentally, resulting in an unsatisfactory collapse of individual activations towards the corresponding class means. To shake off these dilemmas, we present a unified \textbf{All}-around \textbf{N}eural \textbf{C}ollapse framework (AllNC), aiming to comprehensively restore NC across multiple aspects including individual activations, class means and classifier vectors. We thoroughly analyze its effectiveness and verify on multiple benchmark datasets that it achieves state-of-the-art in both balanced and imbalanced settings.
Related papers
- Neural Collapse in Cumulative Link Models for Ordinal Regression: An Analysis with Unconstrained Feature Model [4.958659914612866]
We show that a phenomenon we call Ordinal Neural Collapse (ONC) indeed emerges and is characterized by the following three properties.<n>In particular, in the zero-regularization limit, a highly local and simple geometric relationship emerges between the latent variables and the threshold values.
arXiv Detail & Related papers (2025-06-06T06:57:02Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Neural Collapse for Cross-entropy Class-Imbalanced Learning with Unconstrained ReLU Feature Model [25.61363481391964]
We show that when the training dataset is class-imbalanced, some Neural Collapse (NC) properties will no longer be true.
In this paper, we generalize NC to imbalanced regime for cross-entropy loss under the unconstrained ReLU feature model.
We find that the weights are aligned to the scaled and centered class-means with scaling factors depend on the number of training samples of each class.
arXiv Detail & Related papers (2024-01-04T04:53:31Z) - Which Features are Learnt by Contrastive Learning? On the Role of
Simplicity Bias in Class Collapse and Feature Suppression [59.97965005675144]
Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision.
We provide the first unified theoretically rigorous framework to determine textitwhich features are learnt by CL.
We present increasing embedding dimensionality and improving the quality of data augmentations as two theoretically motivated solutions.
arXiv Detail & Related papers (2023-05-25T23:37:22Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
Few-shot class-incremental learning (FSCIL) has been a challenging problem as only a few training samples are accessible for each novel class in the new sessions.
We deal with this misalignment dilemma in FSCIL inspired by the recently discovered phenomenon named neural collapse.
We propose a neural collapse inspired framework for FSCIL. Experiments on the miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our proposed framework outperforms the state-of-the-art performances.
arXiv Detail & Related papers (2023-02-06T18:39:40Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
We show that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes.
We introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure.
Our method ranks 1st and sets a new record on the ScanNet200 test leaderboard.
arXiv Detail & Related papers (2023-01-03T13:51:51Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Prevalence of Neural Collapse during the terminal phase of deep learning
training [7.031848258307718]
Modern practice for training classification deepnets involves a Terminal Phase of Training (TPT)
During TPT, the training error stays effectively zero while training loss is pushed towards zero.
The symmetric and very simple geometry induced by the TPT confers important benefits, including better performance, better generalization, and better interpretability.
arXiv Detail & Related papers (2020-08-18T23:12:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.