Posterior Covariance Structures in Gaussian Processes
- URL: http://arxiv.org/abs/2408.07379v1
- Date: Wed, 14 Aug 2024 08:56:45 GMT
- Title: Posterior Covariance Structures in Gaussian Processes
- Authors: Difeng Cai, Edmond Chow, Yuanzhe Xi,
- Abstract summary: We show how the bandwidth parameter and the spatial distribution of the observations influence the posterior covariance.
We propose several estimators to efficiently measure the absolute posterior covariance field.
We conduct a wide range of experiments to illustrate our theoretical findings and their practical applications.
- Score: 2.1137702137979946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a comprehensive analysis of the posterior covariance field in Gaussian processes, with applications to the posterior covariance matrix. The analysis is based on the Gaussian prior covariance but the approach also applies to other covariance kernels. Our geometric analysis reveals how the Gaussian kernel's bandwidth parameter and the spatial distribution of the observations influence the posterior covariance as well as the corresponding covariance matrix, enabling straightforward identification of areas with high or low covariance in magnitude. Drawing inspiration from the a posteriori error estimation techniques in adaptive finite element methods, we also propose several estimators to efficiently measure the absolute posterior covariance field, which can be used for efficient covariance matrix approximation and preconditioning. We conduct a wide range of experiments to illustrate our theoretical findings and their practical applications.
Related papers
- Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators [0.5439020425819]
This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives.
The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently.
arXiv Detail & Related papers (2024-05-08T14:44:34Z) - A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
We propose a framework for the analysis of the low-rank approximation error in Frobenius norm for centered and non-standard matrices.
Under minimal assumptions, we derive accurate bounds in expectation and probability.
Our bounds have clear interpretations that enable us to derive properties and motivate practical choices.
arXiv Detail & Related papers (2024-05-08T04:51:56Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - On the Computation of the Gaussian Rate-Distortion-Perception Function [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for a multivariate Gaussian source under mean squared error (MSE) distortion.
We provide the associated algorithmic realization, as well as the convergence and the rate of convergence characterization.
We corroborate our results with numerical simulations and draw connections to existing results.
arXiv Detail & Related papers (2023-11-15T18:34:03Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data.
We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.
arXiv Detail & Related papers (2020-05-04T18:00:59Z) - Inverses of Matern Covariances on Grids [0.0]
We study the properties of a popular approximation based on partial differential equations on a regular grid of points.
We find that it assigns too much power at high frequencies and does not provide increasingly accurate approximations to the inverse as the grid spacing goes to zero.
In a simulation study, we investigate the implications for parameter estimation, finding that the SPDE approximation tends to overestimate spatial range parameters.
arXiv Detail & Related papers (2019-12-26T18:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.