Fact or Fiction? Improving Fact Verification with Knowledge Graphs through Simplified Subgraph Retrievals
- URL: http://arxiv.org/abs/2408.07453v1
- Date: Wed, 14 Aug 2024 10:46:15 GMT
- Title: Fact or Fiction? Improving Fact Verification with Knowledge Graphs through Simplified Subgraph Retrievals
- Authors: Tobias A. Opsahl,
- Abstract summary: We present efficient methods for verifying claims on a dataset where the evidence is in the form of structured knowledge graphs.
By simplifying the evidence retrieval process, we are able to construct models that both require less computational resources and achieve better test-set accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent success in natural language processing (NLP), fact verification still remains a difficult task. Due to misinformation spreading increasingly fast, attention has been directed towards automatically verifying the correctness of claims. In the domain of NLP, this is usually done by training supervised machine learning models to verify claims by utilizing evidence from trustworthy corpora. We present efficient methods for verifying claims on a dataset where the evidence is in the form of structured knowledge graphs. We use the FactKG dataset, which is constructed from the DBpedia knowledge graph extracted from Wikipedia. By simplifying the evidence retrieval process, from fine-tuned language models to simple logical retrievals, we are able to construct models that both require less computational resources and achieve better test-set accuracy.
Related papers
- Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining to Improve Fact Verification with Knowledge Graphs [0.0]
We present FactGenius, a novel method that enhances fact-checking by combining zero-shot prompting of large language models with fuzzy text matching on knowledge graphs.
The evaluation of FactGenius on the FactKG, a benchmark dataset for fact verification, demonstrates that it significantly outperforms existing baselines.
arXiv Detail & Related papers (2024-06-03T13:24:37Z) - Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables [22.18384189336634]
HeterFC is a word-level Heterogeneous-graph-based model for Fact Checking over unstructured and structured information.
We perform information propagation via a relational graph neural network, interactions between claims and evidence.
We introduce a multitask loss function to account for potential inaccuracies in evidence retrieval.
arXiv Detail & Related papers (2024-02-20T14:10:40Z) - FactLLaMA: Optimizing Instruction-Following Language Models with
External Knowledge for Automated Fact-Checking [10.046323978189847]
We propose combining the power of instruction-following language models with external evidence retrieval to enhance fact-checking performance.
Our approach involves leveraging search engines to retrieve relevant evidence for a given input claim.
Then, we instruct-tune an open-sourced language model, called LLaMA, using this evidence, enabling it to predict the veracity of the input claim more accurately.
arXiv Detail & Related papers (2023-09-01T04:14:39Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - WikiCheck: An end-to-end open source Automatic Fact-Checking API based
on Wikipedia [1.14219428942199]
We review the State-of-the-Art datasets and solutions for Automatic Fact-checking.
We propose a data filtering method that improves the model's performance and generalization.
We present a new fact-checking system, the textitWikiCheck API that automatically performs a facts validation process based on the Wikipedia knowledge base.
arXiv Detail & Related papers (2021-09-02T10:45:07Z) - FaVIQ: FAct Verification from Information-seeking Questions [77.7067957445298]
We construct a large-scale fact verification dataset called FaVIQ using information-seeking questions posed by real users.
Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification.
arXiv Detail & Related papers (2021-07-05T17:31:44Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
We present a simple model that can be trained on sequence structures.
Results on a large-scale dataset for Fact Extraction and VERification show that our model outperforms the graph-based approaches.
arXiv Detail & Related papers (2021-06-02T05:40:12Z) - Few Shot Learning for Information Verification [0.0]
We aim to verify facts based on evidence selected from a list of articles taken from Wikipedia.
In this research, we aim to verify facts based on evidence selected from a list of articles taken from Wikipedia.
arXiv Detail & Related papers (2021-02-22T12:56:12Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.