Wasserstein Gradient Flows of MMD Functionals with Distance Kernel and Cauchy Problems on Quantile Functions
- URL: http://arxiv.org/abs/2408.07498v2
- Date: Fri, 08 Nov 2024 12:17:50 GMT
- Title: Wasserstein Gradient Flows of MMD Functionals with Distance Kernel and Cauchy Problems on Quantile Functions
- Authors: Richard Duong, Viktor Stein, Robert Beinert, Johannes Hertrich, Gabriele Steidl,
- Abstract summary: We describe Wasserstein gradient flows of maximum mean discrepancy functionals $mathcal F_nu := textMMD_K2(cdot, nu)$ towards given target measures $nu$ on the real line.
For certain $mathcal F_nu$-flows this implies that initial point measures instantly become absolutely continuous, and stay so over time.
- Score: 2.3301643766310374
- License:
- Abstract: We give a comprehensive description of Wasserstein gradient flows of maximum mean discrepancy (MMD) functionals $\mathcal F_\nu := \text{MMD}_K^2(\cdot, \nu)$ towards given target measures $\nu$ on the real line, where we focus on the negative distance kernel $K(x,y) := -|x-y|$. In one dimension, the Wasserstein-2 space can be isometrically embedded into the cone $\mathcal C(0,1) \subset L_2(0,1)$ of quantile functions leading to a characterization of Wasserstein gradient flows via the solution of an associated Cauchy problem on $L_2(0,1)$. Based on the construction of an appropriate counterpart of $\mathcal F_\nu$ on $L_2(0,1)$ and its subdifferential, we provide a solution of the Cauchy problem. For discrete target measures $\nu$, this results in a piecewise linear solution formula. We prove invariance and smoothing properties of the flow on subsets of $\mathcal C(0,1)$. For certain $\mathcal F_\nu$-flows this implies that initial point measures instantly become absolutely continuous, and stay so over time. Finally, we illustrate the behavior of the flow by various numerical examples using an implicit Euler scheme, which is easily computable by a bisection algorithm. For continuous targets $\nu$, also the explicit Euler scheme can be employed, although with limited convergence guarantees.
Related papers
- Single-Loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions [41.43895948769255]
We show a class of non-smooth non-asymptotic fairness problems in the form of $min_x[yin Yphi(x, y) - max_zin Zpsix(x, z)]$.
We propose an envelope approximate gradient SMAG, the first method for solving these problems, provide a state-of-the-art non-asymptotic convergence rate.
arXiv Detail & Related papers (2024-05-28T20:52:46Z) - Estimation and Inference in Distributional Reinforcement Learning [28.253677740976197]
We show that a dataset of size $widetilde Oleft(frac|mathcalS||mathcalA|epsilon2 (1-gamma)4right)$ suffices to ensure the Kolmogorov metric and total variation metric between $hatetapi$ and $etapi$ is below $epsilon$ with high probability.
Our findings give rise to a unified approach to statistical inference of a wide class of statistical functionals of $etapi$.
arXiv Detail & Related papers (2023-09-29T14:14:53Z) - Properties of Discrete Sliced Wasserstein Losses [11.280151521887076]
The Sliced Wasserstein (SW) distance has become a popular alternative to the Wasserstein distance for comparing probability measures.
Widespread applications include image processing, domain adaptation and generative modelling, where it is common to optimise some parameters in order to minimise SW.
We investigate the regularity and optimisation properties of this energy, as well as its Monte-Carlo approximation $mathcalE_p$.
arXiv Detail & Related papers (2023-07-19T21:21:18Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD [38.221784575853796]
This work considers the problem of finding first-order stationary point of a non atau function with potentially constant smoothness using a gradient.
We develop a technique that allows us to prove $mathcalO(fracmathrmpolylog(T)sigmatT)$ convergence rates without assuming uniform bounds on the noise.
arXiv Detail & Related papers (2023-02-13T18:13:36Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - From Smooth Wasserstein Distance to Dual Sobolev Norm: Empirical
Approximation and Statistical Applications [18.618590805279187]
We show that $mathsfW_p(sigma)$ is controlled by a $pth order smooth dual Sobolev $mathsfd_p(sigma)$.
We derive the limit distribution of $sqrtnmathsfd_p(sigma)(hatmu_n,mu)$ in all dimensions $d$, when $mu$ is sub-Gaussian.
arXiv Detail & Related papers (2021-01-11T17:23:24Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.