See It All: Contextualized Late Aggregation for 3D Dense Captioning
- URL: http://arxiv.org/abs/2408.07648v1
- Date: Wed, 14 Aug 2024 16:19:18 GMT
- Title: See It All: Contextualized Late Aggregation for 3D Dense Captioning
- Authors: Minjung Kim, Hyung Suk Lim, Seung Hwan Kim, Soonyoung Lee, Bumsoo Kim, Gunhee Kim,
- Abstract summary: 3D dense captioning is a task to localize objects in a 3D scene and generate descriptive sentences for each object.
Recent approaches in 3D dense captioning have adopted transformer encoder-decoder frameworks from object detection to build an end-to-end pipeline without hand-crafted components.
We introduce SIA (See-It-All), a transformer pipeline that engages in 3D dense captioning with a novel paradigm called late aggregation.
- Score: 38.14179122810755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D dense captioning is a task to localize objects in a 3D scene and generate descriptive sentences for each object. Recent approaches in 3D dense captioning have adopted transformer encoder-decoder frameworks from object detection to build an end-to-end pipeline without hand-crafted components. However, these approaches struggle with contradicting objectives where a single query attention has to simultaneously view both the tightly localized object regions and contextual environment. To overcome this challenge, we introduce SIA (See-It-All), a transformer pipeline that engages in 3D dense captioning with a novel paradigm called late aggregation. SIA simultaneously decodes two sets of queries-context query and instance query. The instance query focuses on localization and object attribute descriptions, while the context query versatilely captures the region-of-interest of relationships between multiple objects or with the global scene, then aggregated afterwards (i.e., late aggregation) via simple distance-based measures. To further enhance the quality of contextualized caption generation, we design a novel aggregator to generate a fully informed caption based on the surrounding context, the global environment, and object instances. Extensive experiments on two of the most widely-used 3D dense captioning datasets demonstrate that our proposed method achieves a significant improvement over prior methods.
Related papers
- Search3D: Hierarchical Open-Vocabulary 3D Segmentation [78.47704793095669]
Open-vocabulary 3D segmentation enables the exploration of 3D spaces using free-form text descriptions.
We introduce Search3D, an approach that builds a hierarchical open-vocabulary 3D scene representation.
Our method aims to expand the capabilities of open vocabulary instance-level 3D segmentation by shifting towards a more flexible open-vocabulary 3D search setting.
arXiv Detail & Related papers (2024-09-27T03:44:07Z) - Bi-directional Contextual Attention for 3D Dense Captioning [38.022425401910894]
3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene.
Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object.
We introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention.
arXiv Detail & Related papers (2024-08-13T06:25:54Z) - GHOST: Grounded Human Motion Generation with Open Vocabulary Scene-and-Text Contexts [48.28000728061778]
We propose a method that integrates an open vocabulary scene encoder into the architecture, establishing a robust connection between text and scene.
Our methodology achieves up to a 30% reduction in the goal object distance metric compared to the prior state-of-the-art baseline model.
arXiv Detail & Related papers (2024-04-08T18:24:12Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes [67.5351491691866]
We present a novel framework, dubbed TeMO, to parse multi-object 3D scenes and edit their styles.
Our method can synthesize high-quality stylized content and outperform the existing methods over a wide range of multi-object 3D meshes.
arXiv Detail & Related papers (2023-12-07T12:10:05Z) - Vote2Cap-DETR++: Decoupling Localization and Describing for End-to-End
3D Dense Captioning [37.44886367452029]
3D dense captioning requires a model to translate its understanding of an input 3D scene into several captions associated with different object regions.
Existing methods adopt a sophisticated "detect-then-describe" pipeline, which builds explicit relation modules upon a 3D detector with numerous hand-crafted components.
We first propose Vote2Cap-DETR, a simple-yet-effective transformer framework that decouples the decoding process of caption generation and object localization through parallel decoding.
arXiv Detail & Related papers (2023-09-06T13:43:27Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.