Out-of-Distribution Learning with Human Feedback
- URL: http://arxiv.org/abs/2408.07772v1
- Date: Wed, 14 Aug 2024 18:49:27 GMT
- Title: Out-of-Distribution Learning with Human Feedback
- Authors: Haoyue Bai, Xuefeng Du, Katie Rainey, Shibin Parameswaran, Yixuan Li,
- Abstract summary: This paper presents a novel framework for OOD learning with human feedback.
Our framework capitalizes on the freely available unlabeled data in the wild.
By exploiting human feedback, we enhance the robustness and reliability of machine learning models.
- Score: 26.398598663165636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) learning often relies heavily on statistical approaches or predefined assumptions about OOD data distributions, hindering their efficacy in addressing multifaceted challenges of OOD generalization and OOD detection in real-world deployment environments. This paper presents a novel framework for OOD learning with human feedback, which can provide invaluable insights into the nature of OOD shifts and guide effective model adaptation. Our framework capitalizes on the freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. To harness such data, our key idea is to selectively provide human feedback and label a small number of informative samples from the wild data distribution, which are then used to train a multi-class classifier and an OOD detector. By exploiting human feedback, we enhance the robustness and reliability of machine learning models, equipping them with the capability to handle OOD scenarios with greater precision. We provide theoretical insights on the generalization error bounds to justify our algorithm. Extensive experiments show the superiority of our method, outperforming the current state-of-the-art by a significant margin.
Related papers
- AHA: Human-Assisted Out-of-Distribution Generalization and Detection [10.927973527794155]
This paper introduces a novel, integrated approach AHA (Adaptive Human-Assisted OOD learning)
It addresses both OOD generalization and detection through a human-assisted framework by labeling data in the wild.
Our method significantly outperforms existing state-of-the-art methods that do not involve human assistance.
arXiv Detail & Related papers (2024-10-10T14:57:11Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - A Survey on Evaluation of Out-of-Distribution Generalization [41.39827887375374]
Out-of-Distribution (OOD) generalization is a complex and fundamental problem.
This paper serves as the first effort to conduct a comprehensive review of OOD evaluation.
We categorize existing research into three paradigms: OOD performance testing, OOD performance prediction, and OOD intrinsic property characterization.
arXiv Detail & Related papers (2024-03-04T09:30:35Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Learning to Augment Distributions for Out-of-Distribution Detection [49.12437300327712]
Open-world classification systems should discern out-of-distribution (OOD) data whose labels deviate from those of in-distribution (ID) cases.
We propose Distributional-Augmented OOD Learning (DAL) to alleviating the OOD distribution discrepancy.
arXiv Detail & Related papers (2023-11-03T09:19:33Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.