Spin-of-Light Gyroscope and the Spin-Rotation Coupling
- URL: http://arxiv.org/abs/2408.07799v1
- Date: Wed, 14 Aug 2024 20:19:45 GMT
- Title: Spin-of-Light Gyroscope and the Spin-Rotation Coupling
- Authors: Bahram Mashhoon, Yuri N. Obukhov,
- Abstract summary: We discuss the coupling of photon spin with rotation in connection with a recent proposal of a precision gyroscope based on the intrinsic spin of light.
We analyze the propagation of electromagnetic radiation in a physical system that uniformly rotates about the direction of wave propagation in the presence of an ambient medium.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss the coupling of photon spin with rotation in connection with a recent proposal of Fedderke et al. [arXiv:2406.16178 [physics.optics]] regarding a precision gyroscope based on the intrinsic spin of light. To this end, we analyze the propagation of electromagnetic radiation in a physical system that uniformly rotates about the direction of wave propagation in the presence of an ambient medium. Finally, we consider the possibility of using this type of spin-of-light gyroscope to measure gravitomagnetic fields.
Related papers
- Spin Noise Spectroscopy of a Single Spin using Single Detected Photons [0.0]
We experimentally demonstrate a new approach in spin noise spectroscopy, based on the detection of single photons.
Such a technique can be extended to an ultrafast regime probing mechanisms down to few tens of picoseconds.
arXiv Detail & Related papers (2024-01-26T16:07:50Z) - Hyperfine-enhanced gyroscope based on solid-state spins [6.130998208629276]
Solid-state platforms based on electro-nuclear spin systems are attractive candidates for rotation sensing.
We propose a gyroscope protocol based on a two-spin system that includes a spin intrinsically tied to the host material.
Our result enables precise measurement of slow rotations and exploration of fundamental physics.
arXiv Detail & Related papers (2024-01-02T18:50:43Z) - Creation and dynamics of spin fluctuations in a noisy magnetic field [0.0]
We investigate the spin fluctuations induced in a thermal atomic ensemble by an external fluctuating uniaxial magnetic field.
We show that additional spin noise is excited, which dramatically depends on the magnetic noise variance and bandwidth.
We develop an analytical perturbative model proving that this spin noise first emerges from the residual optical pumping in the medium.
arXiv Detail & Related papers (2023-09-06T11:20:46Z) - Controlled excitation of rotons in superfluid helium with an optical
centrifuge [77.34726150561087]
We show that the orientation of the angular momentum transferred from the laser field to the rotons, is dictated by the centrifuge.
The observed decay of the coherent Raman signal suggests that the decoherence is governed by the scattering on thermal rotons and phonons.
arXiv Detail & Related papers (2023-06-02T23:30:03Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - All-optical noise spectroscopy of a solid-state spin [0.0]
Noise spectroscopy elucidates the fundamental noise sources in spin systems.
Existing techniques for noise spectroscopy that rely on microwave fields become infeasible when the microwave power is too weak to generate Rabi rotations of the spin.
Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy.
arXiv Detail & Related papers (2021-09-08T02:47:15Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.